16-Bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90880 Series

MB90F882(S)/F883(S)/F883A(S)/F884(S)/F884A(S) MB90882(S)/883(S)/884(S)/V880(A)-101/-102

■ DESCRIPTION

The MB90880 series is a general-purpose 16-bit microcontroller, designed by Fujitsu, for process control of devices such as consumer appliances, which require high-speed real-time processing capabilities.

The instruction set of the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU core retains the same AT architecture as the $\mathrm{F}^{2} \mathrm{MC}^{* 1}$ family, with further refinements including high-level language instructions, an expanded addressing mode, enhanced multiplierdivider instructions and bit processing. In addition, a 32-bit accumulator is built in to enable long word processing.

As its peripheral resources, the MB90880 series has a 16-bit PPG, multi-function serial interface (software switch over enabled for SIO, UART and $I^{2} \mathrm{C}^{* 2}$), 10-bit A/D converter, 16 -bit I/O timer, 8/16-bit up-down counter, base timer (software switch over enabled for 16-bit reload timer, PWC timer, PPG timer and PWM timer), DTP / external interrupt and chip select pins.
*1: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.
*2 : Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page
URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

MB90880 Series

- FEATURES

- Clock

Minimum instruction execution time : $30.3 \mathrm{~ns} / 4.125 \mathrm{MHz}$ source oscillation \times eight times
(in internal operation : $33 \mathrm{MHz} / 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$)
PLL clock multiplication system

- Maximum memory space 16 Mbytes
- Instruction set optimized for control applications

Supported data types: bit, byte, word and long word
Standard addressing modes: 23 types
Enhanced high-precision calculation realized by 32-bit accumulator
Signed multiplication/division instructions and extended RETI instruction functions

- Instruction set supporting high-level language (C language) and multi-task operations Introduction of system stack pointer
Symmetrical instruction set and barrel shift instructions
- Improved execution speed

4-byte queue

- Powerful interrupt functions

Eight priority levels programmable; External interrupts : 24

- Data transfer functions ($\mu \mathrm{DMAC}$) Up to 16 channels
- Built-in ROM Flash ROM : 256, 384 and 512 Kbytes; MASK ROM : 256, 384 and 512 Kbytes
- Built-in RAM

Flash RAM : 16, 24 and 30 Kbytes; MASK RAM : 16, 24 and 30 Kbytes

- General-purpose ports

Dual clock product : up to 81 channels; Single clock product : up to 83 channels

- A/D converter RC successive approximation conversion type : 20 channels (Resolution: 8 or 10 bits)
- Multi-function serial interface 7 channels (software switchable between for SIO, UART and I²C)
- 16-bit PPG 8 channels
- 8/16-bit up-down counter/timer Event input pins : 6
8 -bit up-down counters: 2
8-bit reload/compare registers : 2
- Base timer

4 channels (software switchable between 16-bit reload timer, PWC timer, PPG timer, and PWM timer)

- 16-bit I/O timer Input capture $\times 2$ channels, output compare $\times 6$ channels, free run timer $\times 1$ channel
- Built-in dual clock generator
- Low power consumption modes

Stop mode, sleep mode, CPU intermittent operation mode, watch timer, time base timer mode

- Package

QFP-100/LQFP-100

- Process

CMOS technology

- Power supply voltage

3V : Single power supply operation

PRODUCT LINEUP

		MB90882(S)	MB90883(S)	MB90884(S)	MB90F882(S)	$\begin{array}{\|l\|} \hline \text { MB90F883 (S) / } \\ \text { MB90F883A (S) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { MB90F884 (S) / } \\ \text { MB90F884A (S) } \end{array}$
Class		MASK ROM product			Flash memory product		
ROM size		256 Kbytes	384 Kbytes	512 Kbytes	256 Kbytes	384 Kbytes	512 Kbytes
RAM size		16 Kbytes	24 Kbytes	30 Kbytes	16 Kbytes	24 Kbytes	30 Kbytes
CPU functions		Number of instructions $: 351$ Instruction bit length $: 8$ bits, 16 bits Instruction length $: 1$ to 7 bytes Data bit length $: 1$ bit, 8 bits, 16 bits Minimum execution time $: 30.3$ ns (machine clock: 33 MHz) The maximum operating frequency of MB90F883(S) and MB90F884(S) is 25 MHz .					
Ports		General-purpose I/O ports : up to 81 for dual clock model, up to 83 for single clock model General-purpose I/O ports (CMOS output)					
Multi-function serial interface		7 channels (software switchable between SIO, UART \& ${ }^{2} \mathrm{C}$)					
16-bit PPG timer		8 channels					
8/16-bit up-down counter/timer		Event input pins: 6, 8-bit up-down counters : 2 8-bit reload/compare registers : 2					
16-bit I/O timer	16-bit free run timer	Number of channels: 1 Overflow interrupt					
	Output compare (OCU)	Number of channels: 6 Pin input source : Match signal of compare register					
	Input capture (ICU)	Number of channels: 2 Rewriting register by pin input (rising, falling or both edges)					
DTP/external interrupt circuit		External interrupt pins : 24 channels (edge/level support)					
Base timer		4 channels (software switchable between 16-bit reload timer, PWC timer, PPG timer, and PWM timer) In MB90F883(S) and MB90F884(S), P24/TIO0, P25/TIO1, P26/TIO2, and P27/TIO3 cannot be used as input function.					
Time base timer		18-bit counter Interrupt interval : $1.0 \mathrm{~ms}, 4.1 \mathrm{~ms}, 16.4 \mathrm{~ms}, 131.1 \mathrm{~ms}$ (source oscillation : 4 MHz)					
A/D converter		Conversion accuracy: 8 or 10 bits can be switched Single conversion mode (Selected channel converted only once) Scan conversion mode (Multiple successive channels converted) Successive conversion mode (Selected channel converted repeatedly) Stop conversion mode (Selected channel converted and stopped repeatedly)					
Watchdog timer							

MB90880 Series

(Continued)

Item Name	MB90882 (S)	MB90883(S)	MB90884(S)	MB90F882(S)	$\begin{aligned} & \hline \text { MB90F883 (S) / } \\ & \text { MB90F883A(S) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { MB90F884 (S) / } \\ \text { MB90F884A(S) } \end{array}$
Low power consumption (standby) modes	Sleep, stop, CPU intermittent operation, watch timer, time base timer					
Flash memory		-		Flash security/ write-protect feature (not available in MB90F883(S), MB90F884(S), MB90F883A(S), and MB90F884A(S))		
Process	CMOS technology					

MB90880 Series

PIN ASSIGNMENTS

MB90880 Series

MB90880 Series

PIN DESCRIPTIONS

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type } \end{gathered}$	Function
LQFP *1	QFP *2			
1	3	P26	D	General-purpose I/O port
		A22		In multiplex mode, it serves as higher address output pin (A22) when corresponding bit in external address output control register (HACR) is set to " 0 ".
				In non-multiplex mode, it serves as higher address output pin (A22) when corresponding bit in external address output control register (HACR) is set to " 0 ".
		TIO2		Base timer I/O pin (ch.2)
2	4	P27	D	General-purpose I/O port
		A23		In multiplex mode, it serves as higher address output pin (A23) when corresponding bit in external address output control register (HACR) is set to "0".
				In non-multiplex mode, it serves as higher address output pin (A23) when corresponding bit in external address output control register (HACR) is set to " 0 ".
		TIO3		Base timer I/O pin (ch.3)
3	5	P30	E	General-purpose I/O port
		A00		Serves as an external address pin in non-multiplex mode.
		ZINO		8/16-bit up-down counter/timer input pin (ch.0)
		Ul1		Multi-function serial input pin
4	6	P31	E	General-purpose I/O port
		A01		Serves as an external address pin in non-multiplex mode.
		AINO		8/16-bit up-down counter/timer input pin (ch.0)
		$\begin{aligned} & \text { UO1/ } \\ & \text { (SDA1) } \end{aligned}$		Multi-function serial output pin
5	7	P32	E	General-purpose I/O port
		A02		Serves as an external address pin in non-multiplex mode.
		BINO		8/16-bit up-down counter/timer input pin (ch.0)
		$\begin{aligned} & \text { UCK1/ } \\ & \text { (SCL1) } \end{aligned}$		Multi-function serial clock I/O pin
6	8	P33	E	General-purpose I/O port
		A03		Serves as an external address pin in non-multiplex mode.
		U12		Multi-function serial input pin
7	9	P34	E	General-purpose I/O port
		A04		Serves as an external address pin in non-multiplex mode.
		$\begin{aligned} & \hline \text { UO2/ } \\ & \text { (SDA2) } \end{aligned}$		Multi-function serial output pin

(Continued)

MB90880 Series

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type } \end{gathered}$	Function
LQFP *1	QFP *2			
8	10	P35	E	General-purpose I/O port
		A05		Serves as an external address pin in non-multiplex mode.
		ZIN1		8/16-bit up-down counter/timer input pin (ch.1)
		$\begin{aligned} & \text { UCK2/ } \\ & \text { (SCL2) } \end{aligned}$		Multi-function serial clock I/O pin
9	11	P36	D	General-purpose I/O port
		A06		Serves as an external address pin in non-multiplex mode.
		AIN1		8/16-bit up-down counter/timer input pin (ch.1)
		IRQ8		External interrupt input pin
10	12	P37	D	General-purpose I/O port
		A07		Serves as an external address pin in non-multiplex mode.
		BIN1		8/16-bit up-down counter/timer input pin (ch.1)
		IRQ9		External interrupt input pin
11	13	P40	A/D	General-purpose I/O port
		A08		Serves as an external address pin in non-multiplex mode.
		X0A		32 kHz oscillator connecting pin
12	14	P41	A/D	General-purpose I/O port
		A09		Serves as an external address pin in non-multiplex mode.
		X1A		32 kHz oscillator connecting pin
13	15	VCC	-	Power supply pin
14	16	VSS	-	Power supply pin (GND)
15	17	C	-	Regulator stabilization capacity connecting pin
16	18	P42	E	General-purpose I/O port
		A10		Serves as an external address pin in non-multiplex mode.
		U13		Multi-function serial input pin
17	19	P43	E	General-purpose I/O port
		A11		Serves as an external address pin in non-multiplex mode.
		$\begin{gathered} \hline \text { UO3/ } \\ \text { (SDA3) } \end{gathered}$		Multi-function serial output pin
18	20	P44	E	General-purpose I/O port
		A12		Serves as an external address pin in non-multiplex mode.
		$\begin{aligned} & \text { UCK3/ } \\ & \text { (SCL3) } \end{aligned}$		Multi-function serial clock I/O pin
19	21	P45	E	General-purpose I/O port
		A13		Serves as an external address pin in non-multiplex mode.
		U14		Multi-function serial input pin

(Continued)

MB90880 Series

Pin no.		Pin name	$\begin{gathered} \text { lircuit } \\ \text { cype } \\ \text { typ } \end{gathered}$	Function
LQFP *1	QFP *2			
20	22	P46	E	General-purpose I/O port
		A14		Serves as an external address pin in non-multiplex mode.
		$\begin{gathered} \text { UO4/ } \\ \text { (SDA4) } \end{gathered}$		Multi-function serial output pin
21	23	P47	E	General-purpose I/O port
		A15		Serves as an external address pin in non-multiplex mode.
		$\begin{aligned} & \text { UCK4/ } \\ & \text { (SCL4) } \end{aligned}$		Multi-function serial clock I/O pin
22	24	P90	H	General-purpose I/O port
		CSO		Chip select 0
		AN8		Analog input pin
23	25	P91	H	General-purpose I/O port
		CS1		Chip select 1
		AN9		Analog input pin
24	26	P92	H	General-purpose I/O port
		CS2		Chip select 2
		AN10		Analog input pin
25	27	P93	H	General-purpose I/O port
		CS3		Chip select 3
		AN11		Analog input pin
26	28	P94	H	General-purpose I/O port
		AN12		Analog input pin
27	29	P95	K	General-purpose I/O port
		AN13		Analog input pin
		(U13)		Multi-function serial input pin (when set by P9FSR register)
28	30	P96	K	General-purpose I/O port
		AN14		Analog input pin
		$\begin{aligned} & (\mathrm{UO} 3) / \\ & \text { (SDA3) } \end{aligned}$		Multi-function serial output pin (when set by P9FSR register)
29	31	P97	K	General-purpose I/O port
		AN15		Analog input pin
		$\begin{aligned} & \hline \text { (UCK3)/ } \\ & \text { (SCL3) } \end{aligned}$		Multi-function serial clock I/O pin (when set by P9FSR register)
30	32	AVCC	-	A/D converter power supply pin
31	33	AVRH	-	A/D converter external reference power supply pin
32	34	P70	H	General-purpose I/O port
		AN16		Analog input pin

(Continued)

MB90880 Series

Pin no.		Pin name		I/O circuit type	
34	QFP *2				

(Continued)

MB90880 Series

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type } \end{gathered}$	Function
LQFP *1	QFP *2			
47	49	P75	G	General-purpose I/O port
		$\begin{gathered} \text { UO5/ } \\ \text { (SDA5) } \end{gathered}$		Multi-function serial output pin
48	50	P76	G	General-purpose I/O port
		IRQ14		External interrupt input pin
		UCK5/ (SCL5)		Multi-function serial clock I/O pin
49	51	MD2	L	Operation mode specification input pin
50	52	MD1	L	Operation mode specification input pin
51	53	MD0	L	Operation mode specification input pin
52	54	$\overline{\mathrm{RST}}$	B	Reset input pin
53	55	P80	G	General-purpose I/O port
		IRQ15		External interrupt input pin
		UI6		Multi-function serial input pin
54	56	P81	G	General-purpose I/O port
		$\begin{aligned} & \hline \text { UO6/ } \\ & \text { (SDA6) } \end{aligned}$		Multi-function serial output pin
55	57	P82	G	General-purpose I/O port
		IRQ16		External interrupt input pin
		UCK6/ (SCL6)		Multi-function serial clock I/O pin
56	58	P83	1	General-purpose I/O port
		IRQ17		External interrupt input pin
57	59	P84	G	General-purpose I/O port
		UIO		Multi-function serial input pin
58	60	P85	G	General-purpose I/O port
		$\begin{gathered} \hline \text { UOO/ } \\ \text { (SDAO) } \end{gathered}$		Multi-function serial output pin
59	61	P86	G	General-purpose I/O port
		$\begin{aligned} & \hline \text { UCKO/ } \\ & \text { (SCLO) } \end{aligned}$		Multi-function serial clock I/O pin
60	62	P87	1	General-purpose I/O port
		IRQ18		External interrupt input pin
		ADTG		External trigger input pin, when A/D converter is used.
61	63	PAO	J	General-purpose I/O port
		IRQ19		External interrupt input pin
		(PPG4)		PPG timer output pin (when set by PAFSR register)

(Continued)

MB90880 Series

Pin no.		Pin name	I/O circuit type*3	Function
LQFP *1	QFP *2			
62	64	PA1	J	General-purpose I/O port
		IRQ20		External interrupt input pin
		(PPG5)		PPG timer output pin (when set by PAFSR register)
63	65	DVCC	-	PA port power supply pin
64	66	DVSS	-	PA port power supply pin (GND)
65	67	PA2	J	General-purpose I/O port
		IRQ21		External interrupt input pin
		(PPG6)		PPG timer output pin (when set by PAFSR register)
66	68	PA3	J	General-purpose I/O port
		IRQ22		External interrupt input pin
		(PPG7)		PPG timer output pin (when set by PAFSR register)
67	69	P50	F	General-purpose I/O port
		ALE		Serves as address latch enable signal (ALE) pin in external bus mode.
68	70	P51	F	General-purpose I/O port
		$\overline{\mathrm{RD}}$		Serves as read strobe output ($\overline{\mathrm{RD}})$ pin in external bus mode.
69	71	P52	F	General-purpose I/O port
		$\overline{\text { WRL }}$		Serves as lower data write strobe output (WRL) pin in external bus mode, and serves as a general-purpose I/O port when WRE bit in EPCR register is " 0 ".
70	72	P53	F	General-purpose I/O port
		$\overline{\text { WRH }}$		Serves as higher data write strobe output ($\overline{\mathrm{WRH}})$ pin in external bus mode with 16-bit bus width, and serves as a general-purpose I/O port when WRE bit in EPCR register is " 0 ".
		IRQ23		External interrupt input pin
71	73	P54	F	General-purpose I/O port
		HRQ		Serves as hold request input (HRQ) pin in external bus mode, and serves as a general-purpose I/O port when HDE bit in EPCR register is " 0 ".
		PPG4		PPG timer output pin
72	74	P55	F	General-purpose I/O port
		$\overline{\text { HAK }}$		Serves as hold acknowledge output ($\overline{\mathrm{HAK}}$) pin in external bus mode, and serves as a general-purpose I/O port when HDE bit in EPCR register is " 0 ".
		PPG5		PPG timer output pin

(Continued)

MB90880 Series

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type } \end{gathered}$	Function
LQFP *1	QFP *2			
73	75	P56	F	General-purpose I/O port
		RDY		Serves as external ready input (RDY) pin in external bus mode, and serves as a general-purpose I/O port when RYE bit in EPCR register is " 0 ".
		PPG6		PPG timer output pin
74	76	P57	F	General-purpose I/O port
		CLK		Serves as machine cycle clock output (CLK) pin in external bus mode, and serves as a general-purpose I/O port when CKE bit in EPCR register is " 0 ".
		PPG7		PPG timer output pin
75	77	P00	C	General-purpose I/O port
		AD00/		In multiplex mode, it serves as lower external address/data bus I/O pin.
				Serves as lower external data bus output pin in non-multiplex mode.
		IRQ0		External interrupt input pin
76	78	P01	C	General-purpose I/O port
		AD01/		Serves as an external address/lower data bus I/O pin in multiplex mode.
		D01		Serves as a lower external data bus output pin in non-multiplex mode.
		IRQ1		External interrupt input pin
77	79	P02	C	General-purpose I/O port
		AD02/		Serves as an external address/lower data bus I/O pin in multiplex mode.
				Serves as a lower external data bus output pin in non-multiplex mode.
		IRQ2		External interrupt input pin
78	80	P03	C	General-purpose I/O port
		AD03/		Serves as an external address/lower data bus I/O pin in multiplex mode.
		D03		Serves as a lower external data bus output pin in non-multiplex mode.
		IRQ3		External interrupt input pin
79	81	P04	C	General-purpose I/O port
				In multiplex mode, it serves as lower external address/data bus I/O pin.
		D04		Serves as a lower external data bus output pin in non-multiplex mode.
		IRQ4		External interrupt input pin

(Continued)

MB90880 Series

Pin no.		Pin name	I/O circuit type* ${ }^{*}$	Function
LQFP *1	QFP *2			
80	82	P05	C	General-purpose I/O port
		$\begin{gathered} \text { AD05/ } \\ \text { D05 } \end{gathered}$		In multiplex mode, it serves as lower external address/data bus I/O pin.
				Serves as a lower external data bus output pin in non-multiplex mode.
		IRQ5		External interrupt input pin
81	83	P06	C	General-purpose I/O port
		AD06/		In multiplex mode, it serves as lower external address/data bus I/O pin.
		D06		Serves as a lower external data bus output pin in non-multiplex mode.
		IRQ6		External interrupt input pin
82	84	P07	C	General-purpose I/O port
		AD07/		In multiplex mode, it serves as lower external address/data bus I/O pin.
		D07		Serves as a lower external data bus output pin in non-multiplex mode.
		IRQ7		External interrupt input pin
83	85	P10	C	General-purpose I/O port
		AD08/		In multiplex mode, it serves as higher external address/data bus I/O pin.
				In non-multiplex mode, it serves as higher external data output pin.
		OUT0		Output compare event output pin
84	86	P11	C	General-purpose I/O port
		AD09/		In multiplex mode, it serves as higher external address/data bus I/O pin.
				In non-multiplex mode, it serves as higher external data output pin.
		OUT1		Output compare event output pin
85	87	P12	C	General-purpose I/O port
		AD10/		In multiplex mode, it serves as higher external address/data bus I/O pin.
				In non-multiplex mode, it serves as higher external data output pin.
		OUT2		Output compare event output pin
86	88	P13	C	General-purpose I/O port
		AD11/ D11		In multiplex mode, it serves as higher external address/data bus I/O pin.
				In non-multiplex mode, it serves as higher external data output pin.
		OUT3		Output compare event output pin

(Continued)

MB90880 Series

Pin no .		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type } * 3 \end{gathered}$	Function
LQFP *1	QFP *2			
87	89	P14	C	General-purpose I/O port
		$\begin{gathered} \hline \text { AD12/ } \\ \text { D12 } \end{gathered}$		In non-multiplex mode, it serves as higher external data output pin.
		OUT4		Output compare event output pin
88	90	VCC	-	Power supply pin
89	91	VSS	-	Power supply pin (GND)
90	92	X1	A	Main oscillator connecting pin
91	93	X0	A	Main oscillator connecting pin
92	94	P15	C	General-purpose I/O port
		AD13/		In multiplex mode, it serves as higher external address/data bus I/O pin.
				In non-multiplex mode, it serves as higher external data output pin.
		OUT5		Output compare event output pin
93	95	P16	C	General-purpose I/O port
		AD14/		In multiplex mode, it serves as higher external address/data bus I/O pin.
				In non-multiplex mode, it serves as higher external data output pin.
		INO		Trigger input pin for input capture ch. 0
94	96	P17	C	General-purpose I/O port
		$\begin{gathered} \text { AD15/ } \\ \text { D15 } \end{gathered}$		In multiplex mode, it serves as higher external address/data bus I/O pin.
				In non-multiplex mode, it serves as higher external data output pin.
		IN1		Trigger input pin for input capture ch. 1
95	97	P20	D	General-purpose I/O port
				In multiplex mode, it serves as higher address output pin (A16) when corresponding bit in external address output control register (HACR) is set to "0".
		A16		In non-multiplex mode, it serves as higher address output pin (A16) when corresponding bit in external address output control register (HACR) is set to " 0 ".
		PPGO		PPG timer output pin
96	98	P21	D	General-purpose I/O port
		A17		In multiplex mode, it serves as higher address output pin (A17) when corresponding bit in external address output control register (HACR) is set to "0".
				In non-multiplex mode, it serves as higher address output pin (A17) when corresponding bit in external address output control register (HACR) is set to " 0 ".
		PPG1		PPG timer output pin

(Continued)

MB90880 Series

(Continued)

Pin no.		Pin name	I/O circuit type* ${ }^{*}$	Function
LQFP *1	QFP *2			
97	99	P22	D	General-purpose I/O port
		A18		In multiplex mode, it serves as higher address output pin (A18) when corresponding bit in external address output control register (HACR) is set to "0".
				In non-multiplex mode, it serves as higher address output pin (A18) when corresponding bit in external address output control register (HACR) is set to " 0 ".
		PPG2		PPG timer output pin
98	100	P23	D	General-purpose I/O port
		A19		In multiplex mode, it serves as higher address output pin (A19) when corresponding bit in external address output control register (HACR) is set to "0".
				In non-multiplex mode, it serves as higher address output pin (A19) when corresponding bit in external address output control register (HACR) is set to " 0 ".
		PPG3		PPG timer output pin
99	1	P24	D	General-purpose I/O port
		A20		In multiplex mode, it serves as higher address output pin (A20) when corresponding bit in external address output control register (HACR) is set to "0".
				In non-multiplex mode, it serves as higher address output pin (A20) when corresponding bit in external address output control register (HACR) is set to " 0 ".
		TIOO		Base timer I/O pin (ch.0)
100	2	P25	D	General-purpose I/O port
		A21		In multiplex mode, it serves as higher address output pin (A21) when corresponding bit in external address output control register (HACR) is set to " 0 ".
				In non-multiplex mode, it serves as higher address output pin (A21) when corresponding bit in external address output control register (HACR) is set to " 0 ".
		TIO1		Base timer I/O pin (ch.1)

*1 : LQFP : FPT-100P-M20
*2 : QFP : FPT-100P-M06
*3 : For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

MB90880 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Oscillation feedback resistance X1, X0 : approx. $1 \mathrm{M} \Omega$ X1A, X0A : approx. $10 \mathrm{M} \Omega$ - Standby control provided
B		Hysteresis input with pull-up resistor
C		- Input pull-up resistor control provided - CMOS level output - Hysteresis input - CMOS input (in external bus mode)
D		- CMOS level output - Hysteresis input
E		- CMOS level output - Hysteresis input - $I^{2} \mathrm{C}$ level hysteresis input

(Continued)

MB90880 Series

Type	Circuit	Remarks
F		- CMOS level output - Hysteresis input - CMOS input (in external bus mode)
G		- CMOS level output (Open-drain control provided) - 5V tolerant - Hysteresis input - ${ }^{2} \mathrm{C}$ level hysteresis input
H		- CMOS level output - Hysteresis input - Analog input
I		- CMOS level output (Open-drain control provided) - 5 V tolerant - Hysteresis input

MB90880 Series

(Continued)

Type	Circuit	Remarks
J		- CMOS/level output (high-current type) - Hysteresis input
K		- CMOS level output - Hysteresis input - Analog input - $I^{2} C$ level hysteresis input
L	Flash memory product	Flash memory product - CMOS level input - High-voltage control for flash test provided
	MASK ROM product	MASK ROM product Hysteresis input

MB90880 Series

HANDLING DEVICES

1. Maximum rated voltages for the prevention of latch-up

Be cautious not to exceed the absolute maximum rating.
CMOS ICs may cause latch-up, when a voltage higher than Vcc or lower than Vss is applied to input or output pins other than medium-to-high resistant pins, or when a voltage exceeding the rating is applied between VCC and VSS pins.

If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Take the utmost care not to let it occur.

Likewise, care must be taken not to allow the analog power supply (AVcc, AVRH) and analog input to exceed the digital power supply $\left(\mathrm{V}_{\mathrm{cc}}\right)$ when turning on or off any analog system.

2. Handling unused pins

Leaving unused input pins open may cause a malfunction or latch-up which leads to fatal damage to the device. Therefore, they must be pulled up or down through at least $2 \mathrm{k} \Omega$ resistance. Also, any unused I/O pin should be left open in the output state, or set to the input state and handled in the same way as an unused input pin.

3. Notes on using external clock

Even when an external clock is being used, oscillation stabilization wait time is required for a power-on reset or release from sub clock mode or stop mode. Note that 25 MHz is the upper limit on the external clock that can be used. The following diagram shows an example of using an external clock.

4. Handling power supply pins ($\mathrm{Vcc} / \mathrm{Vss}$)

When multiple VCC and VSS pins supply pins are used, all the power supply pins must be connected to external power and ground lines due to the device design, to reduce latch-up and unwanted radiation, prevent abnormal operation of strobe signals caused by the rise in the ground level and to conform to the total output current rating. Make sure to connect the VCC and VSS pins of this device via lowest impedance to power lines. It is recommended that a bypass capacitor of around $0.1 \mu \mathrm{~F}$ be placed between the VCC and VSS pins near the device.

5. Crystal oscillator circuit

Noises around X0/X1 or X0A/X1A pins may cause abnormal operations. It is strongly recommended to provide bypass capacitors via shortest distance from X0/X1, X0A/X1A pins, crystal oscillator (or ceramic oscillator) and ground lines and also not to allow the lines of the oscillation circuit to cross the lines of other circuits. This will ensure stable operations of the printed circuit boards. Please ask each crystal maker to evaluate the oscillational characteristics of the crystal and this device.

6. Notes on PLL clock mode operation

If an oscillator comes off or clock input stops during PLL clock mode operation, this microcontroller may continue its operation using a free-running frequency from a self-excited oscillation circuit within PLL. This is not a guaranteed operation.

MB90880 Series

7. Power-on and power-off sequence of A / D converter and analog input

Turn on the A / D converters ($\mathrm{AVcc}, \mathrm{AVRH}$) and analog inputs (ANO to AN19) after turning on the digital power supply (Vcc).
During power-off, turn off the digital power supply (Vcc) after turning off the A / D converters and analog inputs (AN0 to AN19).
In this case, make sure that $A V R H$ does not exceed $A V c c$ during the power-on/power-off procedure.
Also make sure that the input voltage does not exceed $A V c c$ when a pin which is also used as an analog input is used as an input port.
8. Handling power supply pins on A / D converter-mounted models

Make sure to achieve " $\mathrm{AVcc}=\mathrm{AVRH}=\mathrm{Vcc}$ " and " AV ss $=\mathrm{V}_{\mathrm{ss}}$ " in connecting the circuits, even when not using the A/D converter function.
9. Note on power-up

To prevent the internal regulator from malfunctioning, maintain the voltage rise time at $50 \mu \mathrm{~s}$ (between 0.2 V and 2.7 V) or more during power-up.

10. Stabilization of power supply

Even when the Vcc power supply voltage is within the specified operating range, it may still cause the device to malfunction, if the power supply changes rapidly. For stabilization reference, it is recommended to control the supply voltage so that $V_{c c}$ ripple variations (P-P values) at commercial frequencies ($50 / 60 \mathrm{~Hz}$) fall below 10% of the standard V_{cc} supply voltage and the coefficient of fluctuation does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at instantaneous power switching.

11. Writing to Flash memory

For serial writing to Flash memory, always make sure that the operating voltage Vcc is between 3.13 V and 3.6 V . For normal writing to Flash memory, always make sure that the operating voltage Vcc is between 3.0 V and 3.6 V .

12. P90/CS0 pins

P90/CS0 pins output "L" during writing Flash serial. Do not input from external.
13. Note of MB90F883 (S) , MB90F884 (S)

- Maximum operating frequency is 25 MHz .
- The base timer cannot use P24/TIO0, P25/TIO1, P26/TIO2, and P27/TIO3 as input function.
- MB90F883(S) and MB90F884(S) do not contain the flash security feature and write-protect feature.

MB90880 Series

BLOCK DIAGRAM

Note: The I/O ports shown in the diagram above are shared by other built-in function blocks. They cannot be used as I/O ports when used as pins for a built-in module.

MB90880 Series

MEMORY MAP

Parts No.	Address \#1	Address \#2	Address \#3
MB90882 (S)	FC0000н	008000н, fixed	004100н
MB90F882 (S)	FC0000		004100 ${ }_{\text {H }}$
MB90883 (S)	FA0000н		006100н
$\begin{aligned} & \text { MB90F883 (S) / } \\ & \text { MB90F883A (S) } \end{aligned}$	FA0000		006100H
MB90884 (S)	F80000 ${ }_{\text {H }}$		007900H
$\begin{array}{\|l} \text { MB90F884 (S) / } \\ \text { MB90F884A (S) } \end{array}$	F80000 ${ }_{\text {H }}$		007900 ${ }_{\text {H }}$
MB90V880 (S)	(F80000\%)		007900н

Note: The image of the ROM data in the FF band appears at the top of the 00 bank in order to enable efficient use of the C compiler small memory model. The lower 16-bit address for the FF bank will be assigned to the same address, so that tables in ROM can be referenced without declaring a "far" indication with the pointer. For example, when accessing the address 00C000н, the actual access is to address FFC000н in ROM. Here the FF bank ROM area exceeds 32 Kbytes, it is not possible to see the entire area in the 00 bank image. Therefore, the ROM data in FF8000н to FFFFFFH can be seen in the 00 bank image, while the data in FF0000н to FF7FFF can only be seen in the FF bank.

MB90880 Series

■ F²MC-16L CPU PROGRAMMING MODEL

- Dedicated register

- General-purpose register

- Processor status

MB90880 Series

- I/O MAP

Address	Register abbreviation	Register name	R/W	Resource	Initial value
000000н	PDR0	Port 0 data register	R/W	Port 0	ХХХХХХХХХв
000001н	PDR1	Port 1 data register	R/W	Port 1	
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXX
000003н	PDR3	Port 3 data register	R/W	Port 3	ХХХХХХХХВ
000004н	PDR4	Port 4 data register	R/W	Port 4	
000005н	PDR5	Port 5 data register	R/W	Port 5	
000006н	PDR6	Port 6 data register	R/W	Port 6	
000007н	PDR7	Port 7 data register	R/W	Port 7	XXXXXXXX ${ }_{\text {¢ }}$
000008н	PDR8	Port 8 data register	R/W	Port 8	
000009н	PDR9	Port 9 data register	R/W	Port 9	
00000Ан	PDRA	Port A data register	R/W	Port A	ХХХХХХХХХ
00000Вн	UDER	Up-down timer input enable register	R/W	Up-down timer input control	XX000000в
00000С ${ }_{\text {H }}$	ILSR0	Serial input level selection register 0	R/W	Multi-function serial control	00000000в
00000D	ILSR1	Serial input level selection register 1	R/W		00000000в
00000Ен	ILSR2	Serial input level selection register 2	R/W		---00000в
00000FH	Disabled				
000010н	DDR0	Port 0 direction register	R/W	Port 0	00000000в
000011н	DDR1	Port 1 direction register	R/W	Port 1	00000000в
000012н	DDR2	Port 2 direction register	R/W	Port 2	00000000в
000013н	DDR3	Port 3 direction register	R/W	Port 3	00000000в
000014н	DDR4	Port 4 direction register	R/W	Port 4	00000000 ${ }_{\text {в }}$
000015	DDR5	Port 5 direction register	R/W	Port 5	00000000 ${ }_{\text {в }}$
000016н	DDR6	Port 6 direction register	R/W	Port 6	00000000 ${ }_{\text {в }}$
000017H	DDR7	Port 7 direction register	R/W	Port 7	-0000000в
000018н	DDR8	Port 8 direction register	R/W	Port 8	00000000 ${ }_{\text {в }}$
000019н	DDR9	Port 9 direction register	R/W	Port 9	00000000 ${ }_{\text {в }}$
00001Aн	DDRA	Port A direction register	R/W	Port A	----0000в
00001Вн	ADER0	Analog input enable register 0	R/W	Port 6, A/D	11111111 ${ }_{\text {B }}$
00001С ${ }_{\text {H }}$	ADER1	Analog input enable register 1	R/W	Port 9, A/D	11111111]
00001Dн	ADER2	Analog input enable register 2	R/W	Port 7, A/D	----1111в
00001Ен	RDR0	Port 0 input resistance register	R/W	Port 0 (pull-up resistance control)	00000000в
00001Fн	RDR1	Port 1 input resistance register	R/W	Port 1 (pull-up resistance control)	00000000в

(Continued)

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
000020н	SMR0	Serial bus mode register ch. 0	R/W	Multi-function serial ch. 0	\$ $\$$ \$ $\$$ \$ $\$$ \$
000021н	SCR0/IBCR0	SCRO/IBCR0 serial bus control register/ $/{ }^{2} \mathrm{C}$ bus control register ch. 0	R/W		\$ $\$$ \$ $\$$ \$ $\$^{\text {S }}$ в
000022н	$\begin{aligned} & \text { ESCRO/ } \\ & \text { IBSR0 } \end{aligned}$	Extended communication control register// ${ }^{2} \mathrm{C}$ bus status register ch. 0	R/W		
000023н	SSR0	Serial status register ch. 0	R/W		\$\$\$\$\$\$\$в
000024н	$\begin{aligned} & \text { RDR00/ } \\ & \text { TDR00 } \end{aligned}$	Transmission/reception data register 0 ch. 0	R,W		
000025 ${ }^{\text {H }}$	RDR10/ TDR10	Transmission/reception data register 1 ch. 0	R,W		
000026н	BGR00	Baud rate generator register 0 ch. 0	R/W		\$\$\$\$\$\$\$\$
000027н	BGR10	Baud rate generator register 1 ch. 0	R/W		\$\$\$\$\$\$\$\$
000028н	ISBA0	7-bit slave address register ch. 0	R/W		00000000в
000029н	ISMK0	7-bit slave address mask register ch. 0	R/W		01111111в
00002Ан	SMR1	Serial bus mode register ch. 1	R/W	Multi-function serial ch. 1	\$\$\$\$\$\$\$\$
00002Вн	SCR1/IBCR1	Serial bus control register / ${ }^{2} \mathrm{C}$ bus control register ch. 1	R/W		\$\$\$\$\$\$\$\$
00002CH	$\begin{aligned} & \text { ESCR1/ } \\ & \text { IBSR1 } \end{aligned}$	Extended communication control register / I ${ }^{2} \mathrm{C}$ bus status register ch. 1	R/W		\$ $\$$ \$ $\$$ \$ $\$^{\text {S }}$ в
00002Dн	SSR1	Serial status register ch. 1	R/W		\$\$\$\$\$\$\$
00002Ен	$\begin{aligned} & \text { RDR01/ } \\ & \text { TDR01 } \end{aligned}$	Transmission/reception data register 0 ch. 1	R,W		\$\$\$\$\$\$\$\$
00002Fн	RDR11/ TDR11	Transmission/reception data register 1 ch. 1	R,W		
000030н	BGR01	Baud rate generator register 0 ch. 1	R/W		\$\$\$\$\$\$\$\$
000031н	BGR11	Baud rate generator register 1 ch. 1	R/W		\$\$\$\$\$\$\$\$
000032н	ISBA1	7-bit slave address register ch. 1	R/W		00000000,
000033н	ISMK1	7-bit slave address mask register ch. 1	R/W		01111111в
000034н	ADCSL	Lower A/D control status register	R/W	A/D Converter	00011110в
000035 ${ }^{\text {H }}$	ADCSH	Higher A/D control status register	R/W		00000000в
000036н	ADCRL	Lower A/D data register	R		XXXXXXXX в
000037 H	ADCRH	Higher A/D data register	R		
000038 ${ }_{\text {н }}$	ADSRL	Lower A/D conversion channel setting register	R/W		00000000в
000039н	ADSRH	Higher A/D conversion channel setting register	R/W		00000000в
00003Ан	Reserved				

(Continued)

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
00003В н $^{\text {¢ }}$	PACSR1	Address detection control status register 1	R/W	Address match detection function	00000000в
00003CH	OLSR0	Output level selection register 0	R/W	Port 7 (N-ch open-drain control)	-000----в
00003Dн	OLSR1	Output level selection register 1	R/W	Port 8 (N-ch open-drain control)	00000000в
00003Ен	SMR2	Serial bus mode register ch. 2	R/W	Multi-function serial ch. 2	\$\$\$\$\$\$\$в
00003FH	SCR2/IBCR2	Serial bus control register / $I^{2} \mathrm{C}$ bus control register ch. 2	R/W		\$\$\$\$\$\$\$в
000040н	$\begin{aligned} & \text { ESCR2/ } \\ & \text { IBSR2 } \end{aligned}$	Extended communication control register / I ${ }^{2} \mathrm{C}$ bus status register ch. 2	R/W		\$\$\$\$\$\$\$в
000041н	SSR2	Serial status register ch. 2	R/W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$
000042н	$\begin{aligned} & \text { RDR02/ } \\ & \text { TDR02 } \end{aligned}$	Transmission/reception data register 0 ch. 2	R,W		\$\$\$\$\$\$\$
000043	RDR12/ TDR12	Transmission/reception data register 1 ch. 2	R,W		\$\$\$\$\$\$\$в
000044н	BGR02	Baud rate generator register 0 ch. 2	R/W		\$\$\$\$\$\$\$8
000045н	BGR12	Baud rate generator register 1 ch. 2	R/W		\$\$\$\$\$\$\$в
000046н	ISBA2	7-bit slave address register ch. 2	R/W		00000000в
000047H	ISMK2	7-bit slave address mask register ch. 2	R/W		01111111в
000048н	SMR3	Serial bus mode register ch. 3	R/W	Multi-function serial ch. 3	\$\$\$\$\$\$\$в
000049н	SCR3/IBCR3	Serial bus control register / I ${ }^{2} \mathrm{C}$ bus control register ch. 3	R/W		\$\$\$\$\$\$\$в
00004Ан	$\begin{aligned} & \text { ESCR3/ } \\ & \text { IBSR3 } \end{aligned}$	Extended communication control register / I ${ }^{2}$ C bus status register ch. 3	R/W		\$\$\$\$\$\$\$в
00004Вн	SSR3	Serial status register ch. 3	R/W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$
00004CH	$\begin{aligned} & \text { RDR03/ } \\ & \text { TDR03 } \end{aligned}$	Transmission/reception data register 0 ch. 3	R,W		\$\$\$\$\$\$\$в
00004D	RDR13/ TDR13	Transmission/reception data register 1 ch. 3	R,W		\$\$\$\$\$\$\$
00004Ен	BGR03	Baud rate generator register 0 ch. 3	R/W		\$\$\$\$\$\$\$в
00004FH	BGR13	Baud rate generator register 1 ch. 3	R/W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$
000050н	ISBA3	7-bit slave address register ch. 3	R/W		00000000в
000051н	ISMK3	7-bit slave address mask register ch. 3	R/W		01111111в
000052н	SMR4	Serial bus mode register ch. 4	R/W	Multi-function serial ch. 4	\$\$\$\$\$\$\$в
000053 ${ }^{\text {H }}$	SCR4/IBCR4	Serial bus control register / $I^{2} \mathrm{C}$ bus control register ch. 4	R/W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$

(Continued)

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
000054H	$\begin{aligned} & \text { ESCR4/ } \\ & \text { IBSR4 } \end{aligned}$	Extended communication control register / I ${ }^{2} \mathrm{C}$ bus status register ch. 4	R/W	Multi-function serial ch. 4	\$\$\$\$\$\$\$в
000055	SSR4	Serial status register ch. 4	R/W		\$\$\$\$\$\$\$ ${ }_{\text {B }}$
000056н	$\begin{aligned} & \text { RDR04/ } \\ & \text { TDR04 } \end{aligned}$	Transmission/reception data register 0 ch. 4	R,W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$
000057 ${ }^{\text {H }}$	RDR14/ TDR14	Transmission/reception data register 1 ch. 4	R,W		\$\$\$\$\$\$\$в
000058н	BGR04	Baud rate generator register 0 ch. 4	R/W		\$\$\$\$\$\$\$в
000059н	BGR14	Baud rate generator register 1 ch. 4	R/W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$
00005Ан	ISBA4	7-bit slave address register ch. 4	R/W		00000000в
00005Вн	ISMK4	7-bit slave address mask register ch. 4	R/W		01111111в
00005Сн	SMR5	Serial bus mode register ch. 5	R/W	Multi-function serial ch. 5	\$\$\$\$\$\$\$
00005Dн	SCR5/IBCR5	Serial bus control register / $\mathrm{I}^{2} \mathrm{C}$ bus control register ch. 5	R/W		\$\$\$\$\$\$\$в
00005Ен	$\begin{aligned} & \text { ESCR5/ } \\ & \text { IBSR5 } \end{aligned}$	Extended communication control register / ${ }^{2} \mathrm{C}$ bus status register ch. 5	R/W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$
00005FH	SSR5	Serial status register ch. 5	R/W		\$\$\$\$\$\$\$в
000060н	$\begin{aligned} & \text { RDR05/ } \\ & \text { TDR05 } \end{aligned}$	Transmission/reception data register 0 ch. 5	R,W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$
000061H	RDR15/ TDR15	Transmission/reception data register 1 ch. 5	R,W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$
000062н	BGR05	Baud rate generator register 0 ch. 5	R/W		\$\$\$\$\$\$\$в
000063н	BGR15	Baud rate generator register 1 ch. 5	R/W		\$\$\$\$\$\$\$ ${ }_{\text {в }}$
000064H	ISBA5	7-bit slave address register ch. 5	R/W		00000000в
000065н	ISMK5	7-bit slave address mask register ch. 5	R/W		01111111в
000066н	ОССРО	Lower output compare register (ch.0)	R/W	16-bit I/O timer output compare (ch. 0 to ch.5)	00000000в
000067		Higher output compare register (ch.0)			00000000в
000068H	OCCP1	Lower output compare register (ch.1)	R/W		00000000в
000069н		Higher output compare register (ch.1)			00000000в
00006Ан	OCCP2	Lower output compare register (ch.2)	R/W		00000000в
00006Вн		Higher output compare register (ch.2)			00000000в
00006Сн	OССР3	Lower output compare register (ch.3)	R/W		00000000в
00006Dн		Higher output compare register (ch.3)			00000000в
00006Ен	Reserved				
00006F	ROMM	ROM mirror function selection register	R/W	ROM mirror function	-------1в

(Continued)

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
000070н	OCCP4	Lower output compare register (ch.4)	R/W	16-bit I/O timer output compare (ch. 0 to ch.5)	00000000в
000071н		Higher output compare register (ch.4)			00000000в
000072н	OCCP5	Lower output compare register (ch.5)	R/W		00000000в
000073н		Higher output compare register (ch.5)			00000000в
000074н	OCS01	Lower output compare control register (ch.0, ch.1)	R/W		0000--00в
000075		Higher output compare control register (ch.0, ch.1)	R/W		---00000в
000076н	OCS23	Lower output compare control register (ch.2, ch.3)	R/W		0000--00в
000077		Higher output compare control register (ch.2, ch.3)	R/W		---00000в
000078н	OCS45	Lower output compare control register (ch.4, ch.5)	R/W		0000--00в
000079 ${ }^{\text {H }}$		Higher output compare control register (ch.4, ch.5)	R/W		---00000 ${ }_{\text {в }}$
00007Ан	IPCP0	Lower input capture data register (ch.0)	R	6-bit I/O timer input capture (ch.0, ch.1)	XXXXXXXX в
00007Вн		Higher input capture data register (ch.0)	R		XXXXXXXX в $^{\text {¢ }}$
00007CH	IPCP1	Lower input capture data register (ch.1)	R		XXXXXXXX ${ }_{\text {B }}$
00007Dн		Higher input capture data register (ch.1)	R		XXXXXXXX в $^{\text {¢ }}$
00007Ен	ICS01	Input capture control status register	R/W		00000000в
00007FH	ICE01	Input capture edge register	R		------ХХв
000080н	TCDT	Lower timer counter data register	R/W	16-bit I/O timer free-run timer	00000000в
000081н	TCDT	Higher timer counter data register	R/W		00000000в
000082н	TCCS	Timer control status register	R/W		00000000в
000083н	TCCS	Timer control status register	R/W		XX-00000в
000084н	CPCLR	Lower compare clear register	R/W		ХХХХХХХХХв
000085 ${ }^{\text {H }}$		Higher compare clear register			XXXXXXXX ${ }_{\text {¢ }}$
$\begin{array}{\|c} \hline \begin{array}{c} 000086 н \\ \text { to } \\ 00009 \text { нн } \end{array} \end{array}$	Reserved				
00009Вн	DCSR	DMAC descriptor channel specification register	R/W	DMAC	00000000в
00009С ${ }_{\text {H }}$	DSRL	DMAC lower status register	R/W	DMAC	00000000в
00009Dн	DSRH	DMAC higher status register	R/W	DMAC	00000000в

(Continued)

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
00009Ен	PACSR0	Address detection control status register 0	R/W	Address match detection function	00000000в
00009Fн	DIRR	Delayed interrupt source generation/ release register	R/W	Delayed interrupt generation module	-------0в
0000АОн	LPMCR	Low power consumption mode control register	W, R/W	Low power	00011000в
0000A1н	CKSCR	Clock selection register	R, R/W		11111100в
$\begin{array}{\|l} \text { 0000А2н, } \\ \text { 0000АЗн } \end{array}$	Reserved				
0000А4н	DSSR	DMAC stop status register	R/W	DMAC	00000000в
0000А5	ARSR	Auto ready function selection register	W	External pin	0011--00в
0000А6н	HACR	External address output control register	W		******** ${ }_{\text {B }}$
0000A7н	EPCR	Bus control signal selection register	W		1000*10-в
0000А8н	WDTC	Watchdog timer control register	R, W	Watchdog timer	XXXXX111в
0000А9н	TBTC	Time base timer control register	W, R/W	Time base timer	1XX00100в
0000ААн	WTC	Watch timer control register	R, R/W	Watch timer	10001000в
0000АВн	Reserved				
0000ACH	DERL	DMAC lower enable register	R/W	DMAC	00000000в
0000ADн	DERH	DMAC higher enable register	R/W		00000000в
0000АЕн	FMCS	Flash memory control status register	W, R/W	Flash memory I/F	000X0000в
0000AFH	Prohibited				
0000B0н	ICR00	Interrupt control register 00	W, R/W	Interrupt control	00000111в
0000B1н	ICR01	Interrupt control register 01	W, R/W		00000111в
0000В2н	ICR02	Interrupt control register 02	W, R/W		00000111в
0000В3н	ICR03	Interrupt control register 03	W, R/W		$00000111_{\text {в }}$
0000В44	ICR04	Interrupt control register 04	W, R/W		00000111в
0000B5 ${ }_{\text {¢ }}$	ICR05	Interrupt control register 05	W, R/W		00000111в
0000В6н	ICR06	Interrupt control register 06	W, R/W		00000111в
0000В7н	ICR07	Interrupt control register 07	W, R/W		00000111в
0000В8н	ICR08	Interrupt control register 08	W, R/W		00000111в
0000В号	ICR09	Interrupt control register 09	W, R/W		00000111в
0000ВАн	ICR10	Interrupt control register 10	W, R/W		00000111в
0000ВВн	ICR11	Interrupt control register 11	W, R/W		00000111в
$0000 \mathrm{BC} \mathrm{H}^{\text {- }}$	ICR12	Interrupt control register 12	W, R/W		00000111в
0000ВDн	ICR13	Interrupt control register 13	W, R/W		00000111в

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
0000ВЕн	ICR14	Interrupt control register 14	W, R/W	Interrupt control	00000111в
0000BF	ICR15	Interrupt control register 15	W, R/W		00000111в
0000С0н	CMR0	Chip select area MASK register 0	R/W	Chip select function	00001111в
0000C1H	CARO	Chip select area register 0	R/W	Interrupt control	11111111в
0000С2н	CMR1	Chip select area MASK register 1	R/W		00001111в
0000С3н	CAR1	Chip select area register 1	R/W		11111111в
0000С4н	CMR2	Chip select area MASK register 2	R/W		00001111в
0000С5 ${ }^{\text {H }}$	CAR2	Chip select area register 2	R/W		11111111в
0000С6н	CMR3	Chip select area MASK register 3	R/W		00001111в
0000C7н	CAR3	Chip select area register 3	R/W		11111111в
0000С8н	CSCR	Chip select control register	R/W		----000*в
0000С9н	CALR	Chip select active level register	R/W		----0000в
$\begin{aligned} & \begin{array}{c} \text { 0000САн } \\ \text { to } \\ 0000 С Е н \end{array} \end{aligned}$	Reserved				
0000СF ${ }^{\text {H }}$	PLLOS	PLL output selection register	W	PLL	------X0в
0000D0н	BAPL	DMA buffer address pointer (low)	R/W	DMAC	XXXXXXXX
0000D1н	BAPM	DMA buffer address pointer (middle)	R/W		ХХХХХХХХХв
0000D2н	BAPH	DMA buffer address pointer (high)	R/W		XXXXXXXX
0000D3н	MACS	DMA control register	R/W		XXXXXXXX
0000D4н	IOAL	DMAI/O register address pointer (low)	R/W		XXXXXXXX ${ }_{\text {¢ }}$
0000D5	IOAH	DMAI/O register address pointer (high)	R/W		XXXXXXXX ${ }_{\text {¢ }}$
0000D6н	DCTL	DMA data counter (low)	R/W		ХХХХХХХХХв
0000D7н	DCTH	DMA data counter (high)	R/W		XXXXXXXX
$\begin{array}{\|c} \begin{array}{c} \text { 0000D8н } \\ \text { to } \\ 0000 \mathrm{DFH} \end{array} \end{array}$	Reserved				
0000E0н	ENIR0	Interrupt/DTP enable register 0	R/W	DTP / external interrupt	00000000в
0000E1н	EIRR0	Interrupt/DTP source register 0	R/W		XXXXXXXX
0000Е2н	ELVR0	Request level setting register 0	R/W		00000000в
0000Е3н		Request level setting register 0	R/W		00000000в
0000E4H	ENIR1	Interrupt/DTP enable register 1	R/W	DTP / external interrupt	00000000в
0000E5н	EIRR1	Interrupt/DTP source register 1	R/W		XXXXXXXX ${ }^{\text {¢ }}$
0000E6н	ELVR1	Request level setting register 1	R/W		00000000в
0000E7H		Request level setting register 1	R/W		00000000в

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
0000E8н	ENIR2	Interrupt/DTP enable register 2	R/W	DTP / external interrupt	XXXX0000в
0000Е9н	EIRR2	Interrupt/DTP source register 2	R/W		
0000ЕАн	ELVR2	Request level setting register 2	R/W		00000000в
0000EВн		Request level setting register 2	R/W		00000000в
$\begin{gathered} \text { O000ECH } \\ \text { to } \\ 0000 \mathrm{EF}_{\mathrm{H}} \end{gathered}$	Reserved				
$\begin{aligned} & \text { 0000FOH } \\ & \text { to } \\ & 0000 \mathrm{FFH}_{\mathrm{H}} \end{aligned}$	External area				
$\begin{gathered} 000100 \mathrm{H} \\ \text { to } \\ \# \mathrm{H}^{*} \end{gathered}$	RAM area				
007900н	PCNTLO	PPG0 lower control status register	R/W	16-bit PPG0	00000000 ${ }_{\text {в }}$
007901н	PCNTH0	PPG0 higher control status register	R/W		00000001в
007902н	PCNTL1	PPG1 lower control status register	R/W	16-bit PPG1	00000000в
007903н	PCNTH1	PPG1 higher control status register	R/W		00000001в
007904н	PCNTL2	PPG2 lower control status register	R/W	16-bit PPG2	00000000в
007905н	PCNTH2	PPG2 higher control status register	R/W		00000001в
007906н	PCNTL3	PPG3 lower control status register	R/W	16-bit PPG3	00000000в
007907н	PCNTH3	PPG3 higher control status register	R/W		00000001в
007908н	PCNTL4	PPG4 lower control status register	R/W	16-bit PPG4	00000000в
007909н	PCNTH4	PPG4 higher control status register	R/W		00000001в
00790Ан	PCNTL5	PPG5 lower control status register	R/W	16-bit PPG5	00000000в
00790Вн	PCNTH5	PPG5 higher control status register	R/W		00000001в
00790Сн	PCNTL6	PPG6 lower control status register	R/W	16-bit PPG6	00000000в
00790Dн	PCNTH6	PPG6 higher control status register	R/W		00000001в
00790Ен	PCNTL7	PPG7 lower control status register	R/W	16-bit PPG7	00000000в
00790FH	PCNTH7	PPG7 higher control status register	R/W		00000001в
007910н	PPGDIV	PPG0 output division setting register	R/W	16-bit PPG0	11111100в
007911H	Reserved				
007912н	PDCRL0	PPG0 down counter register	R	16-bit PPG0	11111111в
007913н	PDCRH0				11111111в
007914	PCSRL0	PPG0 period setting register	W		111111118
007915	PCSRH0				11111111в

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
007916н	PUDUTLO	PPG0 duty setting register	W	16-bit PPG0	00000000в
007917н	PUDUTH0				00000000в
007918	Disabled				
007919н	Disabled				
00791Ан	PDCRL1	PPG1 down counter register	R	16-bit PPG1	111111118
00791Вн	PDCRH1				11111111в
00791С ${ }_{\text {H }}$	PCSRL1	PPG1 period setting register	W		111111111в
00791的	PCSRH1				11111111в
00791Eн	PUDUTL1	PPG1 duty setting register	W		00000000в
00791Fн	PUDUTH1				00000000в
007920н	Disabled				
007921H	Disabled				
007922н	PDCRL2	PPG2 down counter register	R	16-bit PPG2	111111118
007923н	PDCRH2				11111111в
007924н	PCSRL2	PPG2 period setting register	W		11111111в
007925	PCSRH2				111111118
007926н	PUDUTL2	PPG2 duty setting register	W		00000000в
007927 ${ }^{\text {H }}$	PUDUTH2				00000000в
007928н	Disabled				
007929н	Disabled				
00792Ан	PDCRL3	PPG3 down counter register	R	16-bit PPG3	11111111в
00792Вн	PDCRH3				11111111в
00792Сн	PCSRL3	PPG3 period setting register	W		111111118
00792的	PCSRH3				11111111в
00792Ен	PUDUTL3	PPG3 duty setting register	W		00000000в
00792FH	PUDUTH3				00000000в
007930н	Disabled				
007931н	Disabled				
007932н	PDCRL4	PPG4 down counter register	R	16-bit PPG4	111111118
007933 ${ }^{\text {H }}$	PDCRH4				11111111в
007934н	PCSRL4	PPG4 period setting register	W		111111111
007935	PCSRH4				11111111в
007936	PUDUTL4	PPG4 duty setting register	W		00000000в
007937 ${ }^{\text {H }}$	PUDUTH4				00000000в

(Continued)

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
007938н	Disabled				
007939н	Disabled				
00793Ан	PDCRL5	PPG5 down counter register	R	16-bit PPG5	11111111в
00793Вн	PDCRH5				11111111 ${ }_{\text {в }}$
00793С	PCSRL5	PPG5 period setting register	W		11111111в
00793的	PCSRH5				11111111в
00793Ен	PUDUTL5	PPG5 duty setting register	W		00000000в
00793FH	PUDUTH5				00000000в
007940н	Disabled				
007941H	Disabled				
007942н	PDCRL6	PPG6 down counter register	R	16-bit PPG6	11111111 ${ }_{\text {в }}$
007943н	PDCRH6				11111111в
007944	PCSRL6	PPG6 period setting register	W		11111111в
007945н	PCSRH6				11111111в
007946н	PUDUTL6	PPG6 duty setting register	W		00000000в
007947	PUDUTH6				00000000в
007948	Disabled				
007949н	Disabled				
00794Ан	PDCRL7	PPG7 down counter register	R	16-bit PPG7	11111111в
00794Вн	PDCRH7				11111111в
00794С ${ }_{\text {H }}$	PCSRL7	PPG7 period setting register	W		11111111в
00794Dн	PCSRH7				11111111в
00794Ен	PUDUTL7	PPG7 duty setting register	W		00000000в
00794FH	PUDUTH7				00000000в
007950н	Disabled				
007951H	Disabled				
007952н	TMCRO	Timer control register ch. 0	R/W	Base timer ch. 0	00000000в
007953н					00000000в
007954H	STC0	Status control register ch. 0	R/W		00000000в
007955 ${ }^{\text {H }}$	Disabled				
007956	TMR0	Timer register ch. 0	R/W	Base timer ch. 0	$\begin{gathered} 00000000 \text { в/ } \\ \text { XXXXXXXX } \end{gathered}$
007957 ${ }^{\text {H }}$					$\begin{gathered} 00000000 \text { в/ } \\ \text { XXXXXXXX } \end{gathered}$

(Continued)

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
007958н	PCSRO/PRLLO	Period/L-width setting register ch. 0	R/W	Base timer ch. 0	ХХХХХХХХХ ${ }_{\text {B }}$
007959н					ХХХХХХХХв
00795Ан	PDUTO/ PRLH0/ DTBF0	Duty/H-width/data buffer register ch. 0	R/W		$\begin{gathered} \text { ХХХХХХХХв/ } \\ 00000000_{\mathrm{B}} \end{gathered}$
00795Вн					$\begin{gathered} \text { XXXXXXXXв } / \\ 00000000_{\mathrm{B}} \end{gathered}$
00795С ${ }_{\text {H }}$	TMCR1	Timer control register ch. 1	R/W	Base timer ch. 1	00000000 ${ }_{\text {в }}$
00795Dн					00000000в
00795Ен	STC1	Status control register ch. 1	R/W		00000000в
00795FH	Disabled				
007960н	TMR1	Timer register ch. 1	R/W	Base timer ch. 1	$\begin{gathered} 00000000 \text { в/ } \\ \text { XXXXXXXX } \end{gathered}$
007961H					$\begin{gathered} 00000000 \mathrm{~B} / \\ \text { XXXXXXXX } \end{gathered}$
007962н	PCSR1/ PRLL1	Period/L-width setting register ch. 1	R/W		XXXXXXXX ${ }_{\text {в }}$
007963н					ХХХХХХХХв
007964H	PDUT1/ PRLH1/ DTBF1	Duty/H-width/data buffer register ch. 1	R/W		$\begin{gathered} \hline \text { XXXXXXXX } / 2 \\ 00000000_{\mathrm{B}} \end{gathered}$
007965					$\begin{gathered} \text { XXXXXXXXв } / \\ 00000000_{\mathrm{B}} \end{gathered}$
007966н	TMCR2	Timer control register ch. 2	R/W	Base timer ch. 2	00000000в
007967н					00000000в
007968н	STC2	Status control register ch. 2	R/W		00000000в
007969н	Disabled				
00796Ан	TMR2	Timer register ch. 2	R/W	Base timer ch. 2	$\begin{aligned} & 00000000_{\mathrm{B}} / \\ & \text { XXXXXXX } \end{aligned}$
00796Вн					$\begin{gathered} 00000000 \mathrm{~B} / \\ \text { XXXXXXXX } \end{gathered}$
00796CH	$\begin{aligned} & \text { PCSR2/ } \\ & \text { PRLL2 } \end{aligned}$	Period/L-width setting register ch. 2	R/W		XXXXXXXX ${ }_{\text {B }}$
00796D					ХХХХХХХХХв
00796Eн	PDUT2/ PRLH2/ DTBF2	Duty/H-width/data buffer register ch. 2	R/W		$\begin{array}{\|l} \hline \text { XXXXXXXX } / \\ 00000000_{\mathrm{B}} \end{array}$
00796FH					$\begin{gathered} \text { XXXXXXXXв } / \\ 00000000_{\mathrm{B}} \end{gathered}$
007970н	TMCR3	Timer control register ch. 3	R/W	Base timer ch. 3	00000000 ${ }_{\text {в }}$
007971н					00000000в
007972н	STC3	Status control register ch. 3	R/W		00000000в

(Continued)

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
007973н	Disabled				
007974 ${ }_{\text {H }}$	TMR3	Timer register ch. 3	R/W	Base timer ch. 3	$\begin{gathered} 00000000 \text { в/ } \\ \text { XXXXXXXXв } \end{gathered}$
007975 ${ }_{\text {H }}$					$\begin{gathered} 00000000 \mathrm{~B} / \\ \text { XXXXXXXX } \end{gathered}$
007976	$\begin{aligned} & \text { PCSR3/ } \\ & \text { PRLL3 } \end{aligned}$	Period/L-width setting register ch. 3	R/W		XXXXXXXX ${ }_{\text {в }}$
007977 ${ }^{\text {H }}$					ХХХХХХХХв
007978 ${ }^{\text {H }}$	PDUT3/ PRLH3/ DTBF3	Duty/H-width/data buffer register ch. 3	R/W		$\begin{gathered} \hline \text { ХХХХХXXX } / \\ 00000000_{\mathrm{B}} \end{gathered}$
007979 ${ }_{\text {H }}$					$\begin{array}{\|c\|} \hline \text { XXXXXXXX } \\ 00000000_{\mathrm{B}} \end{array}$
00797Ан	UDCR0	Up-down count register (ch.0)	R	8/16-bit up-down counter/timer	00000000в
00797В	UDCR1	Up-down count register (ch.1)	R		00000000в
00797С	RCR0	Reload/compare register (ch.0)	W		00000000в
00797D	RCR1	Reload/compare register (ch.1)	W		00000000в
00797Eн	CCRLO	Lower counter control register (ch.0)	W, R/W		ХХ00Х000в
00797FH	CCRH0	Higher counter control register (ch.0)	R/W		00000000в
007980н	CCRL1	Lower counter control register (ch.1)	W, R/W		ХХ00Х000в
007981н	CCRH1	Higher counter control register (ch.1)	R/W		-0000000в
007982н	CSR0	Counter status register (ch.0)	R, R/W		00000000в
007983 ${ }_{\text {H }}$	Reserved				
007984н	CSR1	Counter status register (ch.1)	R, R/W	8/16-bit up-down counter/timer	00000000в
$\begin{gathered} \text { 007985н } \\ \text { to } \\ 00798 F_{H} \end{gathered}$	Reserved				
007990 ${ }^{\text {H }}$	SMR6	Serial bus mode register ch. 6	R/W	Multi-function serial ch. 6	\$\$\$\$\$\$\$\$
007991н	SCR6/IBCR6	Serial bus control register / I ${ }^{2} \mathrm{C}$ bus control register ch. 6	R/W		\$\$\$\$\$\$\$\$ ${ }_{\text {в }}$
007992н	$\begin{aligned} & \text { ESCR6/ } \\ & \text { IBSR6 } \end{aligned}$	Extended communication control register / $I^{2} \mathrm{C}$ bus status register ch. 6	R/W		\$\$\$\$\$\$\$\$в
007993н	SSR6	Serial status register ch. 6	R/W		\$\$\$\$\$\$\$\$ ${ }_{\text {B }}$
007994н	$\begin{aligned} & \text { RDR06/ } \\ & \text { TDR06 } \end{aligned}$	Transmission/reception data register 0 ch. 6	R,W		\$\$\$\$\$\$\$\$в
007995 ${ }_{\text {H }}$	RDR16/ TDR16	Transmission/reception data register 1 ch. 6	R,W		\$ $\$$ \$ $\$$ \$ $\$^{\text {S }}$ в
007996н	BGR06	Baud rate generator register 0 ch. 6	R/W		\$\$\$\$\$\$\$\$
007997н	BGR16	Baud rate generator register 1 ch. 6	R/W		\$\$\$\$\$\$\$ ${ }_{\text {¢ }}$

(Continued)

MB90880 Series

Address	Register abbreviation	Register name	R/W	Resource	Initial value
007998н	ISBA6	7-bit slave address register ch. 6	R/W	Multi-function serial	00000000 ${ }_{\text {в }}$
007999н	ISMK6	7-bit slave address mask register ch. 6	R/W	ch. 6	01111111в
00799Ан	PAFSR	PPG pin assignment switching register	R/W	PPG pin switching control	----0000в
00799Вн	PMSSR	PPG multi-channel start register	R/W	PPG multi-start control	00000000 ${ }_{\text {в }}$
00799CH	Reserved				
00799D	P9FSR	Serial pin switching register 1	R/W	Multi-function serial pin control	-----000в
$\begin{array}{\|l} \mathbf{0 0 7 9}^{0079} \text { to } \\ \text { to } \end{array}$	Reserved				
0079A2н	P7FSR	Serial pin switching register 0	R/W	Multi-function serial pin control	----000Хв
0079АЗн	LSYNS	LIN SYNCH FIELD switching register	R/W	Input capture input control	10001000в
$\begin{array}{\|l\|l} \text { 0079А4н, } \\ \text { 0079А5 } \end{array}$	Reserved				
0079A6н	FWR0	Flash memory write control register 0	R/W	Flash memory I/F	00000000,
0079A7н	FWR1	Flash memory write control register 1	R/W		00000000 ${ }_{\text {в }}$
$\begin{array}{\|c\|} \hline \begin{array}{c} \text { 0079A8н } \\ \text { to } \\ 0079 \mathrm{DF}_{\mathrm{H}} \end{array} \\ \hline \end{array}$	Reserved				
0079E0н	PADR0	Detection address register 0 (low)	R/W	Address match detection function	XXXXXXXX
0079E1н		Detection address register 0 (middle)			ХХХХХХХХХв
0079Е2н		Detection address register 0 (high)			XXXXXXXX
0079E3н	PADR1	Detection address register 1 (low)	R/W	Address match detection function	ХХХХХХХХв
0079E4H		Detection address register 1 (middle)			ХХХХХХХХХв
0079E5н		Detection address register 1 (high)			XXXXXXXX
0079E6н	PADR2	Detection address register 2 (low)	R/W	Address match detection function	ХХХХХХХХв
0079E7H		Detection address register 2 (middle)			ХХХХХХХХв
0079E8н		Detection address register 2 (high)			XXXXXXXX
$\begin{array}{\|c} \begin{array}{c} \text { 0079E9н } \\ \text { to } \\ \text { to } \end{array} \end{array}$	Reserved				
0079F0н	PADR3	Detection address register 3 (low)	R/W	Address match detection function	XXXXXXXX ${ }^{\text {¢ }}$
0079F1н		Detection address register 3 (middle)			ХХХХХХХХв
0079F2н		Detection address register 3 (high)			XXXXXXXX ${ }_{\text {¢ }}$

(Continued)

MB90880 Series

(Continued)

Address	Register abbreviation	Register name		R/W	Resource

Explanation on R/W
R/W : Readable/Writable
R : Read only
W : Write only
Explanation on initial value
0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad$: The initial value of this bit is undefined.

- : This bit is not used.
* : The initial value of this bit is " 1 " or " 0 ".

It varies depending on the mode pin (MD2, MD1 or MD0 pin).
$+\quad$: The initial value of this bit is " 1 " or " 0 ".
\$: The initial value of this bit varies depending on the operation mode of the resource.
\#H* : Varies depending on the RAM area of the device.

MB90880 Series

INTERRUPT SOURCES, INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTERS

Interrupt source	Clearing of $\mathrm{El}^{2} \mathrm{OS}$	μ DMAC channel no.	Interrupt vector		Interrupt control register	
			No.	Address	No.	Address
Reset	\times	-	\#08	FFFFDC ${ }_{\text {H }}$	-	-
INT9 instruction	\times	-	\#09	FFFFD8 ${ }_{\text {¢ }}$	-	-
Exception	\times	-	\#10	FFFFD4н	-	-
INT0 (IRQ0/1)	\bigcirc	0	\#11	FFFFD0н	ICR00	0000B0н
INT0 (IRQ2 to IRQ7)	\bigcirc	\times	\#12	FFFFCCH		
INT0 (IRQ8 to IRQ15)	\bigcirc	\times	\#13	FFFFC8 ${ }_{\text {н }}$	ICR01	0000B1н
INT0 (IRQ16 to IRQ23)	\bigcirc	\times	\#14	FFFFC4 ${ }_{\text {¢ }}$		
Base timer ch. 0 (source 0,1)	\bigcirc	1	\#15	FFFFCOH	ICR02	0000B2н
Base timer ch. 1 (source 0,1)	\bigcirc	2	\#16	FFFFBCH		
Base timer ch. 2 (source 0,1)	\bigcirc	3	\#17	FFFFB84	ICR03	0000В3 ${ }^{\text {H }}$
Base timer ch. 3 (source 0,1)	\bigcirc	4	\#18	FFFFB4н		
PPG0/PPG4 counter borrow	\bigcirc	5	\#19	FFFFB0н	ICR04	0000B4н
PPG1/PPG5 counter borrow	\bigcirc	6	\#20	FFFFACH		
PPG2/PPG6 counter borrow	\bigcirc	7	\#21	FFFFA8н	ICR05	0000B5 ${ }^{\text {H }}$
PPG3/PPG7 counter borrow	\times	8	\#22	FFFFA4 ${ }_{\text {H }}$		
8/16-bit up-down counter/timer (ch.0/1) compare / underflow / overflow / up-down inversion	\times	\times	\#23	FFFFA0н	ICR06	0000B6н
Input capture retrieval (ch.0/1)	\bigcirc	\times	\#24	FFFF9CH		
Output compare (ch.0/1/2) match	\bigcirc	\times	\#25	FFFF98 ${ }_{\text {¢ }}$	ICR07	0000B7\%
Output compare (ch.3/4/5) match	\bigcirc	\times	\#26	FFFF94,		
A/D converter	\bigcirc	\times	\#27	FFFF90н	ICR08	0000B8 ${ }^{\text {H }}$
Overflow in 16-bit free-run timer / compare clear / multi-function serial ch.4/5/6 status	\bigcirc	9	\#28	FFFF8CH		
Multi-function serial ch. 4 reception	\bigcirc	10	\#29	FFFF88\%	ICR09	0000B9 ${ }^{\text {H }}$
Multi-function serial ch. 4 transition	\bigcirc	11	\#30	FFFF84н		
Multi-function serial ch. 5 reception	\bigcirc	12	\#31	FFFF80н	ICR10	0000ВАн
Multi-function serial ch. 5 transition	\bigcirc	13	\#32	FFFF7C		
Multi-function serial ch. 6 reception	\bigcirc	14	\#33	FFFFF78	ICR11	0000ВВн
Multi-function serial ch. 6 transition	\bigcirc	15	\#34	FFFF74		
Multi-function serial ch.0/1 reception / status	(0)	\times	\#35	FFFF70н	ICR12	0000BCH
Multi-function serial ch.0/1 transmission	\bigcirc	\times	\#36	FFFF6C ${ }_{\text {H }}$		
Multi-function serial ch. 2 reception / status	©	\times	\#37	FFFF68н	ICR13	0000BD
Multi-function serial ch. 2 transmission	\bigcirc	\times	\#38	FFFF64		

MB90880 Series

(Continued)

Interrupt source	Clearing of $\mathrm{El}^{2} \mathrm{OS}$	μ DMAC channel no.	Interrupt vector		Interrupt control register	
			No.	Address	No.	Address
Multi-function serial ch. 3 reception / status	(\times	\#39	FFFF60н	ICR14	0000ВВн
Multi-function serial ch. 3 transmission	\bigcirc	\times	\#40	FFFF5C ${ }_{\text {H }}$		
Flash writing/deletion, time base timer, watch timer*	\times	\times	\#41	FFFF58	ICR15	0000BFн
Delayed interrupt generation module	\times	\times	\#42	FFFF544		

\times : The interrupt request flag is not cleared by the interrupt clear signal.
\bigcirc : The interrupt request flag is cleared by the interrupt clear signal.
© : The interrupt request flag is cleared by the interrupt clear signal. Stop request function provided at receiving only.

* : Flash writing/deletion, the time base timer and watch timer cannot be used simultaneously.

Note: If a resource has two interrupt sources for the same interrupt number, both of the interrupt request flags are cleared by the $\mathrm{EI}^{2} \mathrm{OS} / \mu \mathrm{DMAC}$ interrupt clear signal. Therefore, when either of the two sources for the $\mathrm{El}^{2} \mathrm{OS} /$ μ DMAC function is used, the other interrupt function can not be used. In this case, set the interrupt request enable bit to " 0 " in the appropriate resource and take measures by software polling.

MB90880 Series

ELECTRICAL CHARACTERISTICS

1. Absolute maximum ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss -0.3	Vss +4.0	V	
	DVcc	Vss-0.3	V ss +4.0	V	DVcc $=$ Vcc*2
	AVcc	Vss - 0.3	V ss +4.0	V	*2
	AVRH	Vss - 0.3	V ss +4.0	V	*2
Input voltage ${ }^{* 1}$	V	Vss - 0.3	$\mathrm{Vss}+4.0$	V	*3
		Vss - 0.3	Vss +7.0	V	*3, *8
Output voltage*1	Vo	Vss-0.3	$\mathrm{Vss}+4.0$	V	*3
		Vss - 0.3	Vss +7.0	V	*3, *8
Maximum clamp current	Iclamp	-2.0	+2.0	mA	*7
Total maximum clamp current	$\Sigma \mid$ Iclamp \mid	-	20	mA	*7
"L" level maximum output current	lol1	-	10	mA	*4
	lol2	-	20	mA	PA0 to PA3*4
"L" level average output current	lolav1	-	3	mA	*5
	lolav2	-	10	mA	PA0 to PA3*5
"L" level maximum total output current	EloL1	-	60	mA	
	EloL2	-	80	mA	PA0 to PA3
"L" level average total output current	Elolav1	-	30	mA	*6
	Slolav2	-	40	mA	PA0 to PA3*6
" H " level maximum output current	Іон1	-	-10	mA	*4
	Іон2	-	-20	mA	PA0 to PA3*4
"H" level average output current	Iohav1	-	-3	mA	*5
	Іонav2	-	-10	mA	PA0 to PA3*5
" H " level maximum total output current	Eloh1	-	-60	mA	
	इloн2	-	-80	mA	PA0 to PA3
" H " level average total output current	Elohav1	-	-30	mA	*6
	Elohav2	-	-40	mA	PA0 to PA3*6
Power consumption	PD	-	320	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: The parameter is based on $\mathrm{Vss}=A \mathrm{Vss}=\mathrm{DV}$ ss $=0.0 \mathrm{~V}$.
*2 : Set $A V c c, ~ D V c c$ and $A V R H$ to the same voltage. $A V c c$ and $D V c c$ must not exceed Vcc. Also, AVRH must not exceed $A V$ cc.
*3: V_{1} and V_{0} must not exceed 0.3 V . When the maximum current to/from an input is limited by using an external component, the Iclamp rating supersedes the V_{1} rating.
*4: The maximum output current is defined as the peak value of the current of any one of the corresponding pins.
(Continued)

MB90880 Series

(Continued)

*5 : The average output current is defined as the value of the average current flowing over 100 ms at any one of the corresponding pins.
*6 : The average total output current is defined as the value of the average current flowing over 100 ms at all of the corresponding pins.
*7 : • Relevant pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P76, P80 to P87, P90 to P97, PA0 to PA3

- Use within recommended operating conditions.
- Use with DC voltage (current) .
- The $+B$ signal should always be applied with a limiting resistance placed between the $+B$ signal and the microcontroller.
- Set the limiting resistor value, whether instantaneous or stationary, so that the current to be input to the microcontroller pin does not exceed the rating during the input of the $+B$ signal.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the $+B$ input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
- Note that if $\mathrm{a}+\mathrm{B}$ signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the $+B$ input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the $+B$ input pin open.
- Note that analog system input/output pins (LCD drive pins, comparator input pins, etc.) cannot accept $+B$ signal input.
- Sample recommended circuit :

*8 : P74 to P76 and P80 to P87 can be used as 5V I/F pins.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed any of these ratings.

MB90880 Series

2. Recommended operating conditions
$\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc DVcc	2.7	3.6	V	In normal operation
		1.8	3.6	V	Hold stop status
"H" level input voltage	$\mathrm{V}_{\text {IH }}$	0.7 Vcc	$\mathrm{V} c \mathrm{c}+0.3$	V	All pins other than $\mathrm{V}_{\mathbf{I} \mathbf{H}}$, $\mathrm{V}_{\mathbf{I н s}}$, $\mathrm{V}_{\text {іны }}$ and $\mathrm{V}_{\text {інх }}$
	$\mathrm{V}_{\text {IH2 }}$	0.7 Vcc	Vss +5.8	V	P74 to P76, P80 to P87
	VIHS	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	Hysteresis input pins
	VIHS2	0.7 Vcc	$\mathrm{V} c \mathrm{c}+0.3$	V	Hysteresis input pins (multi-function serial pins)
	VIHS3	0.7 Vcc	$\mathrm{Vcc}+0.3$	V	CMOS input pins (external bus mode input pins)
	Viнm	$\mathrm{Vcc}-0.3$	$\mathrm{Vcc}+0.3$	V	MD pin input
	V $\mathrm{H}^{\text {x }}$	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	X0A and X1A pins
" \llcorner " level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	All pins other than Vils, Vilm and $\mathrm{V}_{\mathrm{IHx}}$
	VILS	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins
	VILS2	Vss - 0.3	0.3 Vcc	V	Hysteresis input pins (multi-function serial pins)
	VILS3	Vss - 0.3	0.3 Vcc	V	CMOS input pins (external bus mode pins)
	VILM	Vss - 0.3	Vss +0.3	V	MD pin input
	Vilx	Vss - 0.3	0.1	V	X0A and X1A pins
Smoothing capacitor	Cs	0.1	1.0	$\mu \mathrm{F}$	Use a ceramic capacitor or comparable capacitor of the AC characteristics. Bypass capacitor at the VCC pin should be greater than this capacitor.
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

- C Pin Connection Diagram

MB90880 Series

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90880 Series

3. DC characteristics

$\left(\mathrm{V}\right.$ cc $=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level output voltage	Vон	All pins except P74 to P76, P80 to P87 and PAO to PA3	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=3.0 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	V cc-0.5	-	-	V	
		$\begin{aligned} & \text { P74 to P76, } \\ & \text { P80 to P87 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=3.0 \mathrm{~V}, \\ & \mathrm{loH}=-2.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V} c \mathrm{c}-0.5$	-	-	V	
		PA0 to PA3	$\begin{aligned} & \mathrm{DV} \mathrm{cc}=3.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ct}}=-10.0 \mathrm{~mA} \end{aligned}$	DVcc-0.6	-	-	V	
$\begin{array}{\|l} \text { "L" level } \\ \text { output } \\ \text { voltage } \end{array}$	VoL	All pins except P74 to P76, P80 to P87 and PA0 to PA3	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
		$\begin{aligned} & \text { P74 to P76, } \\ & \text { P80 to P87 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=3.0 \mathrm{~V}, \\ & \mathrm{loH}=-2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
		PA0 to PA3	$\begin{aligned} & \mathrm{DV} \mathrm{cc}=3.0 \mathrm{~V}, \\ & \mathrm{loc}=10.0 \mathrm{~mA} \end{aligned}$	-	-	0.5	V	
Input leak current	11.	All input pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-10	-	+10	$\mu \mathrm{A}$	
Pull-up resistance	Rpull			25	50	100	k Ω	Evaluation version
		-	-	15	33	66	$\mathrm{k} \Omega$	Flash memory version / MASKROM version
Open-drain output current	lleak	P31, P32, P34, P35, P43, P44, P46, P47, P72 to P76, P80 to P87, P96, P97	-	-	0.1	10	$\mu \mathrm{A}$	

(Continued)

MB90880 Series

(Continued)
($\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}$ to 3.6 V , $\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min	Typ	Max	
Supply current	Icc	-	V cc $=3.3 \mathrm{~V}$; Normal internal 25 MHz operation	-	20	28	mA
			V cc $=3.3 \mathrm{~V}$; Normal internal 33 MHz operation	-	28	38	mA
			$\mathrm{Vcc}=3.3 \mathrm{~V}$; Internal 25 MHz operation; flash write	-	30	40	mA
			$\mathrm{V} c \mathrm{cc}=3.3 \mathrm{~V}$ Internal 33 MHz operation; flash write	-	40	52	mA
	Iccs	-	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} ; \\ & \text { Internal } 25 \mathrm{MHz} \\ & \text { operation; sleep mode } \end{aligned}$	-	6	12	mA
			$\begin{aligned} & \hline \mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} ; \\ & \text { Internal } 33 \mathrm{MHz} \\ & \text { operation; sleep mode } \end{aligned}$	-	10	20	mA
	Icts	-	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} ;$ Internal 2 MHz , operation; Time-base timer	-	0.25	0.9	mA
	Iccl	-	$\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}$ External 32 kHz \& internal 8 kHz operation; sub-operation $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$	-	80	200	$\mu \mathrm{A}$
	Iccls	-	$\mathrm{Vcc}=3.3 \mathrm{~V}$; External 32 MHz , Internal 8 MHz operation; sub sleep mode ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	-	50	160	$\mu \mathrm{A}$
	Ісст	-	$\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}$ External 32 kHz \& internal 8 kHz operation; watch operation $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$	-	20	110	$\mu \mathrm{A}$
	Іссн	-	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \\ & \text { Stop mode; } \mathrm{V} \mathrm{Cc}=3.3 \mathrm{~V} \end{aligned}$	-	15	100	$\mu \mathrm{A}$
Input capacitance	Cin	All pins except AVCC, AVSS, VCC, DVCC, VSS, DVSS	AVcc, $\mathrm{AV}^{\text {ss, }} \mathrm{V}$ cc, $\mathrm{DV}^{\text {cc, }}$, $\mathrm{V}_{\text {ss, }}$ DVss	-	5	15	pF

Note : P74 to P76 and P80 to P87 are N-ch open-drain pins with controls and normally used at the CMOS level.

MB90880 Series

4. AC characteristics
(1) Clock timing ratings
(Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	Fсн	X0, X1	-	3	-	25	MHz	External crystal oscillation
			-	3	-	50		External clock input
			-	4	-	25		PLL1 multiplication
			-	3	-	12.5		PLL2 multiplication
			-	3	-	6.66		PLL3 multiplication
			-	3	-	6.25		PLL4 multiplication
			-	3	-	5.5		PLL6 multiplication
			-	3	-	4.125		PLL8 multiplication
	Fcı	X0A, X1A	-	-	32.768	-	kHz	
Clock cycle time	tc	X0, X1	-	15.15	-	333	ns	*1
	tcı	X0A, X1A	-	-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{aligned} & \hline \text { Pwh } \\ & \text { PwL } \end{aligned}$	X0	-	5	-	-	ns	
	Pwith Pwll	X0A	-	-	15.2	-	$\mu \mathrm{s}$	*2
Input clock rise/fall time	$\begin{aligned} & \text { tor } \\ & \text { tof } \end{aligned}$	X0	-	-	-	5	ns	External clock in use
Internal operating clock frequency	fcp	-	-	1.5	-	33	MHz	*1
	fcpl	-	-	-	8.192	-	kHz	
Internal operating clock cycle time	tcp	-	-	30.3	-	666	ns	* 1
	tcpL	-	-	-	122.1	-	$\mu \mathrm{s}$	

*1 : Observe the operating voltage with care.
The maximum operating frequency is 25 MHz in MB90F883(S) and MB90F884(S).
*2 : Input it at a duty ratio of $50 \% \pm 3 \%$.

- X0, X1 clock timing

MB90880 Series

- X0A, X1A clock timing

MB90880 Series

- PLL warranted operating range

Notes: • Use the fcp at 4 MHz or higher only for PLL1 multiplication.

- For A/D operating frequencies, refer to " 5 . A/D Converter electrical characteristics".

*1: When using the internal clock at " $20 \mathrm{MHz}<\mathrm{fcp} \leq 25 \mathrm{MHz}$ " in PLL1, 2, 3 or 4 multiplication setting, set both of the DIV2 and PLL2 bits to "1" in the PLLOS register.
Example: When the source oscillator frequency is 24 MHz in PLL1 multiplication :
CKSCR register: CS1 = " 0 ", CSO = " 0 "
PLLOS register: DIV2 = " 1 ", PLL2 = "1"
Example : When the source oscillator frequency is 6 MHz in PLL3 multiplication :
CKSCR register : CS1 = " 1 ", CS0 = "0"
PLLOS register: DIV2 = "1", PLL2 = "1"
*2 : When using the internal clock at " $20 \mathrm{MHz}<\mathrm{fcp} \leq 25 \mathrm{MHz}$ " in PLL 2 or 4 multiplication setting, the following settings can also be used.
PLL2 multiplication : CKSCR register : CS1 = "0", CSO = "0"
PLLOS register : DIV2 = "0", PLL2 = "1"
PLL4 multiplication CKSCR register : CS1 = "0", CSO = " ""
PLLOS register: DIV2 = "0", PLL2 = " 1 "
*3 : When using the PLL6 or 8 multiplication setting, set DIV2 to " 0 " and PLL2 to " 1 " in the PLLOS register.
Example : When the source oscillator frequency is 4 MHz in PLL6 multiplication:
CKSCR register : CS1 = " " ", CSO = " "" "
PLLOS register : DIV2 $=$ " 0 ", PLL2 $=$ " 1 "
Example : When the source oscillator frequency is 3 MHz in PLL8 multiplication :
CKSCR register : CS1 = " 1 ", CSO = " $1 "$
PLLOS register : DIV2 = " 0 ", PLL2 = "1"
*4: The maximum operating frequency of MB90F883(S) and MB90F884(S) is 25 MHz .

MB90880 Series

AC characteristics are determined using the following measurement reference voltage values.

- Input signal waveform

Hysteresis input pins

- Output signal waveform

Output pins

Pins other than hysteresis input/MD input pins
0.7 Vcc
0.3 Vcc

MB90880 Series

(2) Clock output timing

$$
\left(\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Cycle time	tcre	CLK	-	tcp*	-	ns	
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcl	CLK	$\mathrm{Vcc}=3.0 \mathrm{~V}$ to 3.6 V	tcp* / $2-15$	tcp* / $2+15$	ns	$\mathrm{f}_{\mathrm{CP}}=25 \mathrm{MHz}$
			$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to 3.3 V	tcp* / 2 - 20	tcp* / $2+20$	ns	$\mathrm{fcP}=16 \mathrm{MHz}$
			V cc $=2.7 \mathrm{~V}$ to 3.3 V	tcP* / 2-64	tcp* / $2+64$	ns	$\mathrm{fcP}=5 \mathrm{MHz}$

*: tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".

MB90880 Series

(3) Reset input ratings

$$
\left(\mathrm{Vcc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Reset input time	$t_{\text {RStL }}$	$\overline{\mathrm{RST}}$	-	16 tcp* ${ }^{*}$	-	ns	In normal operation
				Oscillator oscillation time *2 $+100 \mu \mathrm{~s}+16 \mathrm{tcp}^{* 1}$	-	ms	In sub clock, sub-sleep, watch and stop modes
				100	-	$\mu \mathrm{s}$	In time base timer mode

*1: tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".
*2 : Oscillator oscillation time is the time to reach 90% amplitude. For a crystal oscillator, this is a few to several tens of ms ; for a ceramic oscillator, this is several hundred ms to a few ms , and for an external clock this is 0 ms .

- In sub clock, sub-sleep, watch and stop modes

- Measurement conditions for AC ratings

CL : Load capacitance applied to pin during testing

CLK, ALE : CL=30 pF
AD15 to AD00 (Address, data bus) , $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, A23 to A00/D15 to D00: CL = 30 pF

MB90880 Series

(4) Power-on ratings (Power-on reset)

$$
\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Power rise time	tR	VCC	-	0.05	30	ms	*
Power cutoff time	toff	VCC		1	-	ms	For continuous operation

*: During the power rise time, Vcc must be less than 0.2 V .

Notes:- The above ratings are values used for power-on reset.

- A power-on reset should be applied by restarting the power supply inside the device.

A sudden change in the supply voltage may activate a power-on reset. As shown in the following figure, it is recommended to apply a smooth voltage rise with suppressed fluctuation when changing the supply voltage during operation.

MB90880 Series

(5) Bus read timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
ALE pulse width	tLhlı	ALE	-	tcp* / $2-15$	-	ns	$\begin{aligned} & 16 \mathrm{MHz}<\mathrm{fcP} \leq \\ & 25 \mathrm{MHz} \end{aligned}$
				tcp* / $2-20$	-	ns	$\begin{aligned} & 8 \mathrm{MHz}<\mathrm{fcP} \leq \\ & 16 \mathrm{MHz} \end{aligned}$
				tcp* / 2-35	-	ns	$\mathrm{fcP} \leq 8 \mathrm{MHz}$
Valid address \rightarrow ALE \downarrow time	$t_{\text {AvLL }}$	Address, ALE	-	tcp* / 2-17	-	ns	
				tcp* / 2-40	-	ns	$\mathrm{f} \mathrm{CP} \leq 8 \mathrm{MHz}$
ALE $\downarrow \rightarrow$ valid address time	tllax	ALE, address	-	tcp* / $2-15$	-	ns	
valid address \rightarrow $\overline{R D} \downarrow$ Time	tavrl	$\begin{gathered} \overline{\mathrm{RD}}, \\ \text { address } \end{gathered}$	-	tcp* - 25	-	ns	
Valid address \rightarrow valid data input	tavdv	Address / data	-	-	5 tcp* $/ 2-55$	ns	
				-	5 tcp* / $2-80$	ns	$\mathrm{fcP} \leq 8 \mathrm{MHz}$
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$	-	3 tcp* / $2-25$	-	ns	$\begin{aligned} & 16 \mathrm{MHz}<\mathrm{fCP} \leq \\ & 25 \mathrm{MHz} \end{aligned}$
				3 tcp* / $2-20$	-	ns	$\begin{aligned} & 8 \mathrm{MHz}<\mathrm{fcp} \leq \\ & 16 \mathrm{MHz} \end{aligned}$
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input	trLdv	$\overline{\mathrm{RD}}$, data	-	-	3 tcp* / 2-55	ns	
				-	3 tcp* / $2-80$	ns	$\mathrm{fcP} \leq 8 \mathrm{MHz}$
$\overline{\mathrm{RD} \uparrow} \rightarrow$ data hold time	trhbx	$\overline{\mathrm{RD}}$, data	-	0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trHLH	$\overline{\mathrm{RD}}, \mathrm{ALE}$	-	tcp* / 2-15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ valid address time	trhax	Address, RD	-	tcp* / $2-10$	-	ns	
Valid address \rightarrow CLK \uparrow time	$\mathrm{tavch}^{\text {a }}$	Address, CLK	-	tcp* / $2-17$	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow \mathrm{CLK} \uparrow$ time	trLCH	$\overline{\mathrm{RD}}, \mathrm{CLK}$	-	tcp* / 2-17	-	ns	
ALE $\downarrow \rightarrow \overline{\mathrm{RD}} \downarrow$ time	tLLRL	$\overline{\mathrm{RD}}, \mathrm{ALE}$	-	tcp* / 2-15	-	ns	

[^0]

MB90880 Series

(6) Bus write timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	Address, WR	-	tcp* -15	-	ns	
$\overline{\text { WR }}$ pulse width	twlwh	$\overline{\text { WRL }}$, $\overline{\text { WRH }}$	-	3 tcp* / $2-25$	-	ns	$\begin{aligned} & 16 \mathrm{MHz}<\mathrm{fcp} \leq \\ & 25 \mathrm{MHz} \end{aligned}$
			-	3 tcp* / $2-20$	-	ns	$\begin{aligned} & 8 \mathrm{MHz}<\mathrm{fcP} \leq 16 \\ & \mathrm{MHz} \end{aligned}$
Valid data output $\rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovwh	Data, WR	-	3 tcp* / $2-15$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data hold time	twhdx	$\overline{\mathrm{WR}}$, data	-	10	-	ns	$\begin{aligned} & 16 \mathrm{MHz}<\mathrm{fcp} \leq \\ & 25 \mathrm{MHz} \end{aligned}$
			-	20	-	ns	$\begin{aligned} & 8 \mathrm{MHz}<\mathrm{fcP} \leq 16 \\ & \mathrm{MHz} \end{aligned}$
			-	30	-	ns	$\mathrm{f}_{\mathrm{CP}} \leq 8 \mathrm{MHz}$
$\overline{\mathrm{WR}} \uparrow \rightarrow$ valid address time	twhax	WR, address	-	tcp* / 2 - 10	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	twhin	$\overline{\text { WR, ALE }}$	-	tcp* / 2-15	-	ns	
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \uparrow time	twlch	$\overline{\text { WR, CLK }}$	-	tcp* / 2-17	-	ns	

[^1]

MB90880 Series

(7) Ready input timing
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to 3.6 V, $\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
RDY setup time	trYHS	RDY	-	35	-	ns	
			-	70	-	ns	$\mathrm{fCP}=8 \mathrm{MHz}$
RDY hold time	trymh		-	0	-	ns	

MB90880 Series

(8) Hold timing

$$
\left(\mathrm{Vcc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Pin floating $\rightarrow \overline{\text { HAK }} \downarrow$ time	txhaL	$\overline{\mathrm{HAK}}$	-	30	tcp*	ns
$\overline{\text { HAK }} \downarrow \rightarrow$ valid pin time	thanv	$\overline{\text { HAK }}$		tcp*	2 tcp*	ns

*: tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".
Note: It takes one or more cycles from when the HRQ pin is read to when $\overline{\mathrm{HAK}}$ changes.

MB90880 Series

(9) Multi-function serial timing (UART, SIO)

$$
\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	-	Internal shift clock mode output pin:$\mathrm{CL}^{\star 1}=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp*2	-	ns
UCK $\downarrow \rightarrow$ UO delay time	tstov	-		-50	$+50$	ns
Valid UI \rightarrow UCK \uparrow	tivsh	-		50	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	-		0	-	ns
Serial clock "H" pulse width	tshsL	-	External shift clock mode output pin:$\mathrm{CL}^{\star 1}=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp*2	-	ns
Serial clock "L" pulse width	tstsh	-		4 tcp*2	-	ns
UCK $\downarrow \rightarrow$ UO delay time	tslov	-		-	50	ns
Valid UI \rightarrow UCK \uparrow	tivsh	-		50	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	-		50	-	ns

*1: CL_{L} is the load capacitance applied to pins during testing.
*2 : tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".

Note: The above AC characteristics are for CLK synchronous mode operation.

- Internal shift clock mode

UCK

- External shift clock mode

UCK

JO

MB90880 Series

(10) Multi-function serial timing $\left(I^{2} C\right)$
a. Master mode operation

$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to 3.6 V, V ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)							
Parameter	Symbol	Conditions	Standard mode		High-speed mode*3		Unit
			Min	Max	Min	Max	
SCL clock frequency	fscı	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega \\ & \mathrm{C}=50 \mathrm{pF}^{\star 4} \end{aligned}$	0	100	0	400	kHz
SCL clock "L" width	tıow		4.7	-	4.7	-	$\mu \mathrm{s}$
SCL clock "H" width	thigh		4.0	-	4.0	-	$\mu \mathrm{s}$
Bus-free time between "stop" condition and "start" condition	trus		4.7	-	1.3	-	$\mu \mathrm{s}$
Repeat "start" condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$
(Repeat) "start" condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$
"Stop" condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thdoat		$2 \mathrm{tcp}{ }^{* 1}$	-	$2 \mathrm{tcp}{ }^{* 1}$	-	$\mu \mathrm{s}$
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsudat		250	-	100*2	-	ns

MB90880 Series

b. Slave mode operation

Parameter	Symbol	Conditions	Standard mode		High-speed mode *3		Unit
			Min	Max	Min	Max	
SCL clock frequency	fscl	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega \\ & \mathrm{C}=50 \mathrm{pF}^{\star 4} \end{aligned}$	0	100	0	400	kHz
SCL clock "L" width	tıow		4.7	-	1.3	-	$\mu \mathrm{s}$
SCL clock "H" width	thigh		4.0	-	0.6	-	$\mu \mathrm{s}$
Bus-free time between "stop" condition and "start" condition	trus		4.7	-	1.3	-	$\mu \mathrm{s}$
Repeat "start" condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$
(Repeat) "start" condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$
"Stop" condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thdoat		$2 \mathrm{tcp}{ }^{* 1}$	-	$2 \mathrm{tcp}{ }^{* 1}$	-	$\mu \mathrm{s}$
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsudat		250	-	100*2	-	ns

*1: tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".
*2 : The high-speed mode $I^{2} \mathrm{C}$ bus device can be used in a standard mode $\mathrm{I}^{2} \mathrm{C}$ bus system. However, the device must satisfy the required condition "tsudat $\geq 250 \mathrm{~ns}$ ". If the device does not extend the "L" period of the SCL signal, the succeeding data must be output to the SDA line before a period of 1250 ns (the maximum time of SDA/SCL rise + tsudat) in which the SCL line is open.
*3: Set the internal operation clock to 6 MHz or higher when using this over 100 kHz .
*4: "R" and "C" are the pull-up resistance and load capacitance of the SCL/SDA lines.

MB90880 Series

- Note on SDA/SCL setup time

Note: The specification for the input data setup time of the device which is connected to the bus may not be satisfied, depending on the load capacitance and pull-up resistance.
If the specification of the input data setup time can not be satisfied, adjust the pull-up resistance of SDA and SCL.

- Timing definition

MB90880 Series

(11) Timer input timing

$$
\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Input pulse width	ttiwn ttiwn	$\begin{aligned} & \text { INO, IN1, } \\ & \text { TIOO to TIO3 } \end{aligned}$	-	4 tcp*	-	ns

*: tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".

IN0, IN1
TIOO to TIO3

(12) Timer output timing
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to 3.6 V , $\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
CLK $\uparrow \rightarrow$ change time PPG0 to PPG5 change time OUT0 to OUT5 change time	tтo	PPG0 to PPG7, OUT0 to OUT5, TIOO to TIO3	Load condition : 80 pF	30	-	ns

MB90880 Series

(13) Trigger input timing

$$
\left(\mathrm{Vcc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttrgh ttrgl	ADTG, IRQ0 to IRQ7	-	5 tcp*	-	ns	In normal operation
				1	-	$\mu \mathrm{s}$	In stop mode

*: tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".

MB90880 Series

(14) Chip select output timing

$$
\left(\mathrm{Vcc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Chip select output valid time $\rightarrow \stackrel{\mathrm{RD}}{ } \downarrow$	tsvRL	$\mathrm{CSO}_{\frac{\text { to }}{\mathrm{RD}}} \mathrm{CS} 3,$	-	tcp* / 2-7	-	ns
Chip select output valid time $\rightarrow \overline{\mathrm{WR}} \downarrow$	tsvwL	$\begin{aligned} & \text { CS0 to CS3, } \\ & \text { WRH, WRL } \end{aligned}$	-	tcp* / 2-7	-	ns
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Chip select output valid time	trhsv	$\overline{R D}$, CS0 to CS3	-	tcp* / 2-17	-	ns
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Chip select output valid time	twhsv	$\overline{\text { WRH, }} \overline{\text { WRL, }}$ CSO to CS3	-	tcp* / 2-17	-	ns

*: tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".

Note: The chip select output signal changes simultaneously due to the internal bus configuration; therefore, this may generate a bus wait. AC cannot be warranted between the ALE output signal and the chip select output signal.

MB90880 Series

5. A/D converter electrical characteristics

$\left(\mathrm{Vcc}=\mathrm{AV} \mathrm{Cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVRH}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Standard	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Linear error	-	-	-	-	± 2.5	LSB	
Differential linear error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vот	ANO to AN7	AVss - 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	
Full-scale transition voltage	$\mathrm{V}_{\text {fSt }}$	ANO to AN7	AVRH - 3.5 LSB	AVRH - 1.5 LSB	AVRH + 0.5 LSB	V	
Sampling time	tsmp	-	1.2	-	-	$\mu \mathrm{s}$	*1
Compare time	tcmp	-	1.8	-	-	$\mu \mathrm{s}$	${ }^{*} 1$
Conversion time	tcov	-	3.0	-	-	$\mu \mathrm{s}$	*1
Analog port input current	Iain	ANO to AN7	-3.0	-	+3.0	$\mu \mathrm{A}$	
Analog input voltage	Vain	ANO to AN7	AVss	-	AVRH	V	
Reference voltage	-	AVRH	AVss +2.2	-	AV ${ }_{\text {cc }}$	V	
Supply current	IA	AVCC	-	1.9	3.7	mA	
	Іat	AVCC	-	-	5^{2}	$\mu \mathrm{A}$	
Reference voltage supply current	IR	AVRH	-	520	720	$\mu \mathrm{A}$	
	Ів	AVRH	-	-	5^{*}	$\mu \mathrm{A}$	
Inter-channel variation	-	ANO to AN7	-	-	4	LSB	

*1 : Time per channel
*2 : Current when the A/D converter is not in operation and the CPU is stopped $(\mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=3.0 \mathrm{~V})$

MB90880 Series

- External impedance and sampling time for analog input

This is an A/D converter with a sample hold function. If high external impedance is preventing it from securing sufficient sampling time, a sufficient analog voltage will not be charged in the internal sample hold capacitor, affecting the accuracy of the A/D conversion. In order to satisfy the A/D conversion accuracy specifications, adjust the register values and operating frequency or decrease the external impedance so that the sampling time becomes longer than the minimum value, based on the relationship between the external impedance and the minimum sampling time. If a sufficient sampling time cannot be secured, connect a capacitor with a capacitance of approximately $0.1 \mu \mathrm{~F}$ to the analog input pin.

Model diagram of analog input circuit

R	C
12.2k Ω (Max)	8.5 pF (Max)

Note : These are reference values.

- Relation between external impedance and minimum sampling time

- Errors :

As I AVRH—AVss I decreases, the absolute error increases.

MB90880 Series

6. Definition of A/D Converter Terms

Resolution : Analog variation that is recognized by an A/D converter.
Non linearity : Deviation between a line across zero-transition line ("00 00000000 " $\leftarrow \rightarrow$ "00 0000 0001") error and full-scale transition line ("11 1111 1110" $\leftarrow \rightarrow$ "11 11111111") and actual conversion characteristics.
Differential : Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal linearity error
Total error value.
: Difference between an actual value and a theoretical value. A total error includes zero transition error, full-scale transition error, and linear error.

(Continued)

MB90880 Series

(Continued)

- Flash memory write/erase characteristics

Parameter	Conditions	Value			Unit	Remarks
		Min	Standard	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} \end{aligned}$	-	0.9	3.6	S	Excludes internal write time before erase operation.
Chip erase time		-	6.2	-	S	Excludes internal write time before erase operation.
Byte (16-bit width) write time		-	23	-	$\mu \mathrm{s}$	Excludes overhead time at system level.
Number of write/erase cycles	-	10000	-	-	cycle	
Flash memory data hold time	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	100000	-	-	h	*

* : Value converted from the evaluation result of technology reliability (The Arrhenius equation is used to convert the high-temperature high-speed test result into the average temperature $+85^{\circ} \mathrm{C}$.)

MB90880 Series

ORDERING INFORMATION

Part number	Package	Remarks
MB90F882PF MB90F883PF MB90F883APF MB90F884PF MB90F884APF MB90882PF MB90883PF MB90884PF MB90F882SPF MB90F883SPF MB90F883ASPF MB90F884SPF MB90F884ASPF MB90882SPF MB90883SPF MB90884SPF	100-pin plastic QFP (FPT-100P-M06)	With S : Single clock product (without sub clock)
MB90F882PMC MB90F883PMC MB90F883APMC MB90F884PMC MB90F884APMC MB90882PMC MB90883PMC MB90884PMC MB90F882SPMC MB90F883SPMC MB90F883ASPMC MB90F884SPMC MB90F884ASPMC MB90882SPMC MB90883SPMC MB90884SPMC	100-pin plastic LQFP (FPT-100P-M20)	Without S: Dual clock product (with sub clock)
MB90V880-101CR-ES MB90V880-102CR-ES MB90V880A-101CR-ES MB90V880A-102CR-ES	299-pin ceramic PGA (PGA-299C-A01)	Evaluation product 101: Single clock product (without sub clock) 102 : Dual clock product (with sub clock)

MB90880 Series

PACKAGE DIMENSIONS

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html
(Continued)

MB90880 Series

(Continued)

100-pin plastic QFP	Lead pitch	0.65 mm
	Package width \times package length	$14.00 \times 20.00 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	3.35 mm MAX
	Code (Reference)	P-QFP100-14×20-0.65
(FPT-100P-M06)		

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

MB90880 Series

MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
-	-	Added the following part numbers: MB90F883A (S), MB90F884A (S)
3	- PRODUCT LINEUP	Added the following details to the CPU functions: "Maximum operating frequency is 25 MHz in MB90F883 (S), MB90F884 (S)"
		Added the following details to the base timer: "In MB90F883(S) and MB90F884(S), P24/TIO0, P25/TIO1, P26/TIO2, and P27/TIO3 cannot be used as input function."
4		Added the "Flash memory" item
21	■ HANDLING DEVICES	Added "13. Note of MB90F883 (S), MB90F884 (S)"
43	ELECTRICAL CHARACTERISTICS 2. Recommended operating conditions	Added the "Smoothing capacitor" item
		Added the "• C Pin Connection Diagram"
46	- ELECTRICAL CHARACTERISTICS 3. DC characteristics	Added the "Icts" and "Iccis" items to the supply current
		Changed supply current ratings: Iccs Internal 25 MHz operation; Typ $9 \rightarrow 6$, Max $16 \rightarrow 12$ Iccs Internal 33 MHz operation; Typ $12 \rightarrow 10$, Max $22 \rightarrow 20$ Iccı Typ $70 \rightarrow 80$ Ісст Typ $15 \rightarrow 20$ Іссн Typ $10 \rightarrow 15$
47	■ELECTRICAL CHARACTERISTICS 4. AC characteristics (1) Clock timing ratings	Added the following details to footnote 1 of the table: "The maximum operating frequency is 25 MHz in MB90F883(S) and MB90F884(S)."
71	- ORDERING INFORMATION	Added the following part numbers: MB90F883APF, MB90F884APF, MB90F883ASPF, MB90F884ASPF, MB90F883APMC, MB90F884APMC, MB90F883ASPMC, MB90F884ASPMC
		Added the following details to the remarks: With S: Single clock product (without sub clock) Without S: Dual clock product (with sub clock)
		Added the MB90V880 item

The vertical lines marked in the left side of the page show the changes.

MB90880 Series

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

[^0]: *: tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".

[^1]: *: tcp is the cycle time for the internal operation clock. Refer to (1) "Clock timing ratings".

